Dominique Colinet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/58529/publications.pdf

Version: 2024-02-01

279701 414303 1,687 35 23 32 citations g-index h-index papers 38 38 38 1264 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Impact of Temperature on the Immune Interaction between a Parasitoid Wasp and Drosophila Host Species. Insects, 2021, 12, 647.	1.0	7
2	Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum. BMC Genomics, 2020, 21, 376.	1.2	19
3	Variation in the Venom of Parasitic Wasps, Drift, or Selection? Insights From a Multivariate QST Analysis. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	15
4	Rapid and Differential Evolution of the Venom Composition of a Parasitoid Wasp Depending on the Host Strain. Toxins, 2019, 11, 629.	1.5	24
5	Biochemical characterization and comparison of aspartylglucosaminidases secreted in venom of the parasitoid wasps Asobara tabida and Leptopilina heterotoma. PLoS ONE, 2017, 12, e0181940.	1.1	13
6	Comparative venomics of Psyttalia lounsburyi and P. concolor, two olive fruit fly parasitoids: a hypothetical role for a GH1 \hat{l}^2 -glucosidase. Scientific Reports, 2016, 6, 35873.	1.6	31
7	Statistical analysis of the individual variability of 1D protein profiles as a tool in ecology: an application to parasitoid venom. Molecular Ecology Resources, 2015, 15, 1120-1132.	2.2	13
8	Recurrent DNA virus domestication leading to different parasite virulence strategies. Science Advances, 2015, 1, e1501150.	4.7	88
9	Insights into function and evolution of parasitoid wasp venoms. Current Opinion in Insect Science, 2014, 6, 52-60.	2.2	96
10	Identification of the main venom protein components of Aphidius ervi, a parasitoid wasp of the aphid model Acyrthosiphon pisum. BMC Genomics, 2014, 15, 342.	1.2	72
11	Development of RNAi in a Drosophila endoparasitoid wasp and demonstration of its efficiency in impairing venom protein production. Journal of Insect Physiology, 2014, 63, 56-61.	0.9	44
12	Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: The case of Leptopilina parasitoids of Drosophila. Insect Biochemistry and Molecular Biology, 2013, 43, 601-611.	1.2	100
13	Venom gland extract is not required for successful parasitism in the polydnavirus-associated endoparasitoid Hyposoter didymator (Hym. Ichneumonidae) despite the presence of numerous novel and conserved venom proteins. Insect Biochemistry and Molecular Biology, 2013, 43, 292-307.	1.2	70
14	Variability of venom components in immune suppressive parasitoid wasps: From a phylogenetic to a population approach. Journal of Insect Physiology, 2013, 59, 205-212.	0.9	59
15	Tracing back the nascence of a new sex-determination pathway to the ancestor of bees and ants. Nature Communications, 2012, 3, 895.	5.8	60
16	Diversity of Virus-Like Particles in Parasitoids' Venom. , 2012, , 181-192.		17
17	Extracellular Superoxide Dismutase in Insects. Journal of Biological Chemistry, 2011, 286, 40110-40121.	1.6	73
18	The Origin of Intraspecific Variation of Virulence in an Eukaryotic Immune Suppressive Parasite. PLoS Pathogens, 2010, 6, e1001206.	2.1	49

#	Article	IF	Citations
19	Involvement of the Cytokine MIF in the Snail Host Immune Response to the Parasite Schistosoma mansoni. PLoS Pathogens, 2010, 6, e1001115.	2.1	88
20	Chapter 6 Variation of Leptopilina boulardi Success in Drosophila Hosts. Advances in Parasitology, 2009, 70, 147-188.	1.4	43
21	A serpin from the parasitoid wasp Leptopilina boulardi targets the Drosophila phenoloxidase cascade. Developmental and Comparative Immunology, 2009, 33, 681-689.	1.0	138
22	Convergent Use of RhoGAP Toxins by Eukaryotic Parasites and Bacterial Pathogens. PLoS Pathogens, 2007, 3, e203.	2.1	94
23	Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology, 2003, 312, 381-394.	1.1	133
24	The nucleotide sequence and genome organization of the whitefly transmitted sweetpotato mild mottle virus: a close relationship with members of the family Potyviridae. Virus Research, 1998, 53, 187-196.	1,1	46
25	SENSITIVE DETECTION OF APPLE STEM GROOVING AND APPLE STEM PITTING VIRUSES FROM INFECTED APPLE TREES BY RT-PCR. Acta Horticulturae, 1998, , 97-104.	0.1	19
26	Differentiation Among Potyviruses Infecting Sweet Potato Based on Genus-and Virus-Specific Reverse Transcription Polymerase Chain Reaction. Plant Disease, 1998, 82, 223-229.	0.7	50
27	Detection of Apple Stem Grooving Virus in Dormant Apple Trees with Crude Extracts as Templates for One-Step RT-PCR. Plant Disease, 1998, 82, 785-790.	0.7	19
28	Evidence for the assignment of two strains of SPLV to the genus Potyvirus based on coat protein and $3\hat{a} \in \mathbb{Z}^2$ non-coding region sequence data. Virus Research, 1997, 49, 91-100.	1.1	26
29	Detection and differentiation of Three potyviruses infecting sweet potato by PCR. Developments in Plant Pathology, 1997, , 417-419.	0.1	0
30	Molecular evidence that the whitefly-transmitted sweetpotato mild mottle virus belongs to a distinct genus of thePotyviridae. Archives of Virology, 1996, 141, 125-135.	0.9	40
31	Determination of the taxonomic position and characterization of yam mosaic virus isolates based on sequence data of the $5\hat{a} \in 2$ -terminal part of the coat protein cistron. Archives of Virology, 1996, 141, 1067-1075.	0.9	12
32	The complete nucleotide sequences of the coat protein cistron and the 3? non-coding region of a newly-identified potyvirus infecting sweetpotato, as compared to those of sweetpotato feathery mottle virus. Archives of Virology, 1994, 139, 327-336.	0.9	30
33	Identification of Distinct Potyviruses in Mixedly-Infected Sweetpotato by the Polymerase Chain Reaction with Degenerate Primers. Phytopathology, 1994, 84, 65.	1.1	46
34	Identification of a sweet potato feathery mottle virus isolate from China (SPFMV-CH) by the polymerase chain reaction with degenerate primers. Journal of Virological Methods, 1993, 45, 149-159.	1.0	49
35	Parasitic success and venom composition evolve upon specialization of parasitoid wasps to different host species. , 0, 1 , .		1