
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/585289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2D Electron Gas and Oxygen Vacancy Induced High Oxygen Evolution Performances for Advanced Co ₃ O ₄ /CeO ₂ Nanohybrids. Advanced Materials, 2019, 31, e1900062.	21.0	242
2	A green method to prepare Pd–Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation. Journal of Power Sources, 2014, 263, 13-21.	7.8	190
3	An effective Pd-NiO x -P composite catalyst for glycerol electrooxidation: Co-existed phosphorus and nickel oxide to enhance performance of Pd. Chemical Engineering Journal, 2017, 308, 419-427.	12.7	82
4	Hybrid NiCoOx adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation. Journal of Power Sources, 2015, 273, 631-637.	7.8	72
5	Effective tunable syngas generation via CO2 reduction reaction by non-precious Fe-N-C electrocatalyst. Chemical Engineering Journal, 2020, 389, 124323.	12.7	63
6	Combining Bimetallic-Alloy with Selenium Functionalized Carbon to Enhance Electrocatalytic Activity towards Glucose Oxidation. Electrochimica Acta, 2017, 244, 16-25.	5.2	51
7	Carbon supported heterostructured Pd–Ag nanoparticle: Highly active electrocatalyst for ethylene glycol oxidation. International Journal of Hydrogen Energy, 2015, 40, 2225-2230.	7.1	50
8	PdSn alloy supported on phenanthroline-functionalized carbon as highly active electrocatalysts for glycerol oxidation. International Journal of Hydrogen Energy, 2016, 41, 1272-1280.	7.1	50
9	Pd nanoparticles supported on phenanthroline modified carbon as high active electrocatalyst for ethylene glycol oxidation. Electrochimica Acta, 2015, 154, 1-8.	5.2	43
10	Facile synthesis of a ternary Pd-P-B nanoalloy: Enhanced catalytic performance towards ethylene glycol electrooxidation. Applied Catalysis A: General, 2016, 525, 1-8.	4.3	41
11	Amorphous ultra-dispersed Pt clusters supported on nitrogen functionalized carbon: A superior electrocatalyst for glycerol electrooxidation. Journal of Power Sources, 2018, 399, 357-362.	7.8	38
12	3D Rosa centifolia-like CeO2 encapsulated with N-doped carbon as an enhanced electrocatalyst for Zn-air batteries. Journal of Colloid and Interface Science, 2020, 578, 796-804.	9.4	37
13	Molybdenum carbide-nitrogen doped carbon composites as effective non-precious electrocatalyst for direct hydrazine fuel cell. Electrochimica Acta, 2021, 384, 138417.	5.2	37
14	Amorphous CoSn alloys decorated by Pt as high efficiency electrocatalysts for ethanol oxidation. Journal of Power Sources, 2011, 196, 8000-8003.	7.8	36
15	Sm2O3 embedded in nitrogen doped carbon with mosaic structure: An effective catalyst for oxygen reduction reaction. Energy, 2017, 133, 115-120.	8.8	36
16	High performance PtxEu alloys as effective electrocatalysts for ammonia electro-oxidation. International Journal of Hydrogen Energy, 2017, 42, 18959-18967.	7.1	36
17	A Highly Efficient Pt-NiO/C Electrocatalyst for Ammonia Electro-Oxidation. Journal of the Electrochemical Society, 2017, 164, F958-F965.	2.9	34
18	Carbon-supported phosphatized CuNi nanoparticle catalysts for hydrazine electrooxidation. International Journal of Hydrogen Energy, 2019, 44, 10637-10645.	7.1	34

#	Article	IF	CITATIONS
19	Cerium carbide embedded in nitrogen-doped carbon as a highly active electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2017, 359, 487-493.	7.8	32
20	A facile precipitation procedure for synthesis of binary Sn-Co oxide promoting Pd catalyst towards glucose electrooxidation. Electrochimica Acta, 2016, 189, 295-302.	5.2	31
21	Ni 5 Sm-P/C ternary alloyed catalyst as highly efficient electrocatalyst for urea electrooxidation. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 326-332.	5.3	28
22	Pd 3 Cu coupling with nitrogen-doped mesoporous carbon to boost performance in glycerol oxidation. Applied Catalysis A: General, 2017, 538, 123-130.	4.3	27
23	Nickel–cobalt alloy doping phosphorus as advanced electrocatalyst for hydrazine oxidation. Journal of Alloys and Compounds, 2019, 807, 151648.	5.5	27
24	Highly ordered micro-meso-macroporous Co-N-doped carbon polyhedrons from bimetal-organic frameworks for rechargeable Zn-air batteries. Journal of Colloid and Interface Science, 2021, 598, 83-92.	9.4	25
25	Nanoporous PdNi/C Electrocatalyst Prepared by Dealloying Highâ€Niâ€content PdNi Alloy for Formic Acid Oxidation. Fuel Cells, 2012, 12, 1129-1133.	2.4	24
26	Flame synthesis of nitrogen, boron co-doped carbon as efficient electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 4771-4779.	7.1	24
27	Facile and scalable preparation of nitrogen, phosphorus codoped nanoporous carbon as oxygen reduction reaction electrocatalyst. Electrochimica Acta, 2017, 248, 11-19.	5.2	23
28	CeO2 overlapped with nitrogen-doped carbon layer anchoring Pt nanoparticles as an efficient electrocatalyst towards oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 12119-12128.	7.1	22
29	Astragali Radix-derived nitrogen-doped porous carbon: An efficient electrocatalyst for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 551-561.	7.1	21
30	Prussian blue analogue derived Pd-Co composite bifunctional electrocatalyst for Zn–air battery. Journal of Alloys and Compounds, 2020, 832, 154896.	5.5	21
31	Pd3Ni nanoparticles combines carbonized 1,10-phenanthroline modified carbon support: AÂhighly efficient electrocatalyst for enhanced methanol oxidation. International Journal of Hydrogen Energy, 2015, 40, 3892-3899.	7.1	18
32	Nanoparticulate TiO2-promoted PtRu/C catalyst for methanol oxidation. Ionics, 2013, 19, 529-534.	2.4	16
33	Fe–Co hybrid oxides promoted Pd electrocatalysts with enhanced catalytic performance for ethylene glycol oxidation. International Journal of Hydrogen Energy, 2015, 40, 10041-10048.	7.1	16
34	Encapsulated NdCuOx bimetallic nanoparticles with nitrogen doped carbon as an efficient electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2017, 258, 1404-1412.	5.2	16
35	A metal–organic framework derived PtCo/C electrocatalyst for ethanol electro-oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 284-292.	5.3	16
36	Mo, Fe bimetallic carbide composite as high stability electrocatalyst for oxygen reduction reaction. Journal of Environmental Chemical Engineering, 2022, 10, 108052.	6.7	15

#	Article	IF	CITATIONS
37	A phosphatized pseudo-core-shell Fe@Cu-P/C electrocatalyst for efficient hydrazine oxidation reaction. Journal of Alloys and Compounds, 2019, 787, 104-111.	5.5	14
38	Dealloyed different atom ratios Pdx(FeCo)10–x nanoparticle: Promising electrocatalyst towards ethylene glycol oxidation. International Journal of Hydrogen Energy, 2016, 41, 300-306.	7.1	13
39	Heterogeneous Ir3Sn–CeO2/C as alternative Pt-free electrocatalysts for ethanol oxidation in acidic media. International Journal of Hydrogen Energy, 2017, 42, 9775-9783.	7.1	13
40	Partially oxidized NiFe alloy: An effective promoter to enhance Pd electrocatalytic performance for ethylene glycol oxidation. International Journal of Hydrogen Energy, 2015, 40, 12262-12267.	7.1	12
41	PdAu nanoparticles anchored on P and Se codoped carbon support as an efficacious electrocatalyst towards glycerol electrooxidation. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 500-508.	5.3	12
42	Nitrogen-modified metal-organic framework-based carbon: An effective non-precious electrocatalyst for oxygen reduction reaction. Catalysis Communications, 2020, 146, 106135.	3.3	12
43	Developing an advanced electrocatalyst derived from Ce(TTA)3Phen embedded polyaniline for oxygen reduction reaction. Applied Surface Science, 2019, 465, 979-985.	6.1	11
44	Etching high-Fe-content PtPdFe nanoparticles as efficient catalysts towards glycerol electrooxidation. New Journal of Chemistry, 2020, 44, 4604-4612.	2.8	11
45	Pd nanoparticles supported on 1H-benzotriazole functionalized carbon with enhanced catalytic performance towards ethanol oxidation. Applied Catalysis A: General, 2015, 505, 410-415.	4.3	10
46	Tuning the performance of nitrogen, phosphorus co-doped nanoporous carbon for oxygen reduction reaction. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 728-737.	5.3	10
47	Phosphatized pseudo-core-shell Ni@Pt/C electrocatalysts for efficient hydrazine oxidation reaction. International Journal of Hydrogen Energy, 2020, 45, 6360-6368.	7.1	10
48	Electrocatalytic Production of Tunable Syngas from CO2 via a Metal-Free Porous Nitrogen-Doped Carbon. Industrial & Engineering Chemistry Research, 2021, 60, 7739-7745.	3.7	10
49	CoS2 strongly coupled with porous FeNC as efficient and stable electrocatalyst for rechargeable zinc-air batteries. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118, 334-341.	5.3	10
50	Facile fabricate stable rare-earth bimetallic carbide as electrocatalyst for active oxygen reduction reaction. Journal of the Taiwan Institute of Chemical Engineers, 2018, 84, 93-100.	5.3	9
51	Nitrogen-doped carbon layer coated CeNiO x as electrocatalyst for oxygen reduction reaction. Journal of Alloys and Compounds, 2018, 761, 8-14.	5.5	9
52	An Economic Magnetic Adsorbent for Acid Blue 80 and Methylene Blue Removal. ChemistrySelect, 2019, 4, 9174-9178.	1.5	9
53	Porous rare earth-transition metal bimetallic oxide nanoparticles oxygen electrocatalyst for rechargeable Zinc-air battery. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134, 104280.	5.3	9
54	Carbonized phenanthroline functionalized carbon as an alternative support: a strategy to intensify Pt activity and durability for methanol oxidation. RSC Advances, 2015, 5, 17216-17222.	3.6	8

#	Article	IF	CITATIONS
55	Supporting Pd nanoparticles on riboflavin-derived carbon: an efficient electrocatalyst for ethylene glycol oxidation. Ionics, 2018, 24, 1745-1754.	2.4	8
56	A novel N and Se codoped-carbon support anchoring Pd nanoparticles as an efficient electrocatalyst towards ethylene glycol electrooxidation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 252, 114467.	3.5	8
57	Dealloying Co-Rich PtPdCo Nanoparticles on Nitrogen Modified Carbon as Advanced Electrocatalyst for Ethylene Glycol Oxidation. Journal of the Electrochemical Society, 2020, 167, 044518.	2.9	8
58	Phosphating a Pd-rich â€~dealloyed PdCo3 nanoparticles': An effective electrocatalyst for glycerol oxidation reaction. Journal of Alloys and Compounds, 2021, 868, 159058.	5.5	8
59	Phenolic resin/chitosan composite derived nitrogen-doped carbon as highly durable and anti-poisoning electrocatalyst for oxygen reductionÂreaction. International Journal of Hydrogen Energy, 2017, 42, 26704-26712.	7.1	7
60	Achieving high electrocatalytic performance towards isopropanol electrooxidation based on a novel N-doping carbon anchored Pd3Fe alloy. International Journal of Hydrogen Energy, 2018, 43, 15952-15961.	7.1	7
61	Sn and N co-doped porous carbon catalyst electrochemically reduce CO2 into tunable syngas. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121, 122-127.	5.3	7
62	Developing a high-effective Pt-based phosphating catalyst for direct ethylene glycol fuel cells. Journal of Alloys and Compounds, 2022, 890, 161899.	5.5	7
63	A multi-component system for urea electrooxidation: Ir3Sn nanoparticles loading on Iron- and Nitrogen- codoped composite carbon support. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112, 116-121.	5.3	6
64	Microwave-assisted synthesis of Pd3Ag nanocomposite via nature polysaccharide applied to glucose detection. International Journal of Biological Macromolecules, 2018, 118, 2065-2070.	7.5	5
65	An adenine-originated N-doped carbon supporting Pd3Ru nanoparticle with high performance for glycerol electrooxidation. Journal of Materials Science, 2019, 54, 4579-4588.	3.7	5