Luming Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5852651/publications.pdf Version: 2024-02-01

LUMING SUN

#	Article	IF	CITATIONS
1	Mid-infrared Outbursts in Nearby Galaxies (MIRONG). II. Optical Spectroscopic Follow-up. Astrophysical Journal, Supplement Series, 2022, 258, 21.	7.7	6
2	Discovery of late-time X-ray flare and anomalous emission line enhancement after the nuclear optical outburst in a narrow-line Seyfert 1 Galaxy. Astronomy and Astrophysics, 2022, 660, A119.	5.1	7
3	A mid-infrared study of superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4057-4073.	4.4	11
4	Discovery of ATLAS17jrp as an Optical-, X-Ray-, and Infrared-bright Tidal Disruption Event in a Star-forming Galaxy. Astrophysical Journal Letters, 2022, 930, L4.	8.3	12
5	Mid-infrared Outbursts in Nearby Galaxies (MIRONG). I. Sample Selection and Characterization. Astrophysical Journal, Supplement Series, 2021, 252, 32.	7.7	26
6	Years-delayed X-Ray Afterglows of TDEs Originated from Wind–Torus Interactions. Astrophysical Journal, 2021, 908, 197.	4.5	6
7	Infrared Echoes of Optical Tidal Disruption Events: â^1⁄41% Dust-covering Factor or Less at Subparsec Scale. Astrophysical Journal, 2021, 911, 31.	4.5	34
8	Mrk 1239: a Type-2 Counterpart of Narrow-line Seyfert-1?. Astrophysical Journal, 2021, 912, 118.	4.5	7
9	B2 0003+38A: A Classical Flat-spectrum Radio Quasar Hosted by a Rotation-dominated Galaxy with a Peculiar Massive Outflow. Astrophysical Journal, 2021, 913, 111.	4.5	2
10	Feeding the Accretion Disk from the Dusty Torus in a Reddened Quasar. Astrophysical Journal, 2021, 916, 86.	4.5	15
11	X-ray flares from the stellar tidal disruption by a candidate supermassive black hole binary. Nature Communications, 2020, 11, 5876.	12.8	26
12	Initial Results from a Systematic Search for Changing-look Active Galactic Nuclei Selected via Mid-infrared Variability. Astrophysical Journal, 2020, 889, 46.	4.5	35
13	A Mid-infrared Flare in the Active Galaxy MCG-02-04-026: Dust Echo of a Nuclear Transient Event. Astrophysical Journal, 2020, 898, 129.	4.5	8
14	Possible â^1⁄40.4 h X-ray quasi-periodicity from an ultrasoft active galactic nucleus. Astronomy and Astrophysics, 2020, 644, L9.	5.1	14
15	Fast inflows as the adjacent fuel of supermassive black hole accretion disks in quasars. Nature, 2019, 573, 83-86.	27.8	17
16	A Deeply Buried Narrow-line Seyfert 1 Nucleus Uncovered in Scattered Light. Astrophysical Journal, 2019, 870, 75.	4.5	6
17	Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052. Astrophysical Journal, 2017, 838, 88.	4.5	24
18	Variation of Ionizing Continuum: The Main Driver of Broad Absorption Line Variability. Astrophysical Journal, Supplement Series, 2017, 229, 22.	7.7	41

#	Article	IF	CITATIONS
19	KECK/ESI LONG-SLIT SPECTROSCOPY OF SBS 1421+511: A RECOILING QUASAR NUCLEUS IN AN ACTIVE GALAXY PAIR?. Astrophysical Journal, 2016, 818, 64.	4.5	1
20	BROAD BALMER ABSORPTION LINE VARIABILITY: EVIDENCE OF GAS TRANSVERSE MOTION IN THE QSO SDSS J125942.80+121312.6. Astrophysical Journal, 2016, 819, 99.	4.5	16
21	DISCOVERY OF EXTREMELY BROAD BALMER ABSORPTION LINES IN SDSS J152350.42+391405.2. Astrophysical Journal, 2015, 815, 113.	4.5	19
22	A COMPREHENSIVE STUDY OF BROAD ABSORPTION LINE QUASARS. I. PREVALENCE OF He i* ABSORPTION LINE MULTIPLETS IN LOW-IONIZATION OBJECTS. Astrophysical Journal, Supplement Series, 2015, 217, 11.	7.7	36
23	RX J1301.9+2747: A HIGHLY VARIABLE SEYFERT GALAXY WITH EXTREMELY SOFT X-RAY EMISSION. Astrophysical Journal, 2013, 768, 167.	4.5	29