Mikhail Katanaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5852432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disclinations in the Geometric Theory of Defects. Proceedings of the Steklov Institute of Mathematics, 2021, 313, 78-98.	0.3	7
2	Spin Distribution for the 't Hooft–Polyakov Monopole in the Geometric Theory of Defects. Universe, 2021, 7, 256.	2.5	4
3	Gravity with dynamical torsion. Classical and Quantum Gravity, 2021, 38, 015014.	4.0	3
4	Nonrelativistic Limit of the Bosonic String. Proceedings of the Steklov Institute of Mathematics, 2020, 309, 183-193.	0.3	0
5	The 't Hooft–Polyakov monopole in the geometric theory of defects. Modern Physics Letters B, 2020, 34, 2050126.	1.9	9
6	Global properties of warped solutions in general relativity with an electromagnetic field and a cosmological constant. II Physical Review D, 2020, 101, .	4.7	0
7	Point disclinations in the Chern–Simons geometric theory of defects. Modern Physics Letters B, 2020, 34, 2150012.	1.9	6
8	Global properties of warped solutions in general relativity with an electromagnetic field and a cosmological constant. Physical Review D, 2019, 100, .	4.7	1
9	Gauge Parameterization of the n-Field. Proceedings of the Steklov Institute of Mathematics, 2019, 306, 127-134.	0.3	2
10	Normal Coordinates in Affine Geometry. Lobachevskii Journal of Mathematics, 2018, 39, 464-476.	0.9	4
11	Chern—Simons Action and Disclinations. Proceedings of the Steklov Institute of Mathematics, 2018, 301, 114-133.	0.3	9
12	Description of Disclinations and Dislocations by the Chern–Simons Action for \$\$mathbb{S}mathbb{O}(3)\$\$ Connection. Physics of Particles and Nuclei, 2018, 49, 890-893.	0.7	5
13	Cosmological models with homogeneous and isotropic spatial sections. Theoretical and Mathematical Physics(Russian Federation), 2017, 191, 661-668.	0.9	8
14	Chern-Simons term in the geometric theory of defects. Physical Review D, 2017, 96, .	4.7	9
15	Killing vector fields and a homogeneous isotropic universe. Physics-Uspekhi, 2016, 59, 689-700.	2.2	14
16	Rotational elastic waves in a cylindrical waveguide with wedge dislocation. Journal of Physics A: Mathematical and Theoretical, 2016, 49, 085202.	2.1	5
17	Lorentz invariant vacuum solutions in general relativity. Proceedings of the Steklov Institute of Mathematics, 2015, 290, 138-142.	0.3	11
18	Rotational elastic waves in double wall tube. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1544-1548.	2.1	5

Mikhail Katanaev

1

#	Article	IF	CITATIONS
19	On homogeneous and isotropic universe. Modern Physics Letters A, 2015, 30, 1550186.	1.2	6
20	Passing the Einstein–Rosen bridge. Modern Physics Letters A, 2014, 29, 1450090.	1.2	5
21	Point massive particle in General Relativity. General Relativity and Gravitation, 2013, 45, 1861-1875.	2.0	16
22	Wedge dislocations, three-dimensional gravity, and the Riemann-Hilbert problem. Physics of Particles and Nuclei, 2012, 43, 639-643.	0.7	2
23	Wedge dislocations and three-dimensional gravity. P-Adic Numbers, Ultrametric Analysis, and Applications, 2012, 4, 5-19.	0.4	2
24	On geometric interpretation of the berry phase. Russian Physics Journal, 2012, 54, 1082-1092.	0.4	2
25	Adiabatic theorem for finite dimensional quantum mechanical systems. Russian Physics Journal, 2011, 54, 342-353.	0.4	2
26	On geometric interpretation of the Aharonov–Bohm effect. Russian Physics Journal, 2011, 54, 507-514.	0.4	2
27	Tube dislocations in gravity. Journal of Mathematical Physics, 2009, 50, 042501.	1.1	10
28	Inside the BTZ black hole. Physical Review D, 2007, 75, .	4.7	5
29	Polynomial form of the Hilbert–Einstein action. General Relativity and Gravitation, 2006, 38, 1233-1240.	2.0	7
30	Polynomial Hamiltonian form of general relativity. Theoretical and Mathematical Physics(Russian) Tj ETQq0 0 0 rg	BT/Qverlo	ock 10 Tf 50
31	Geometric theory of defects. Physics-Uspekhi, 2005, 48, 675-701.	2.2	83
32	One-Dimensional Topologically Nontrivial Solutions in the Skyrme Model. Theoretical and Mathematical Physics(Russian Federation), 2004, 138, 163-176.	0.9	16
33	Wedge Dislocation in the Geometric Theory of Defects. Theoretical and Mathematical Physics(Russian) Tj ETQq1	1 8:38431	4 ₅₉ BT /Ove
34	Effective Action for Scalar Fields in Two-Dimensional Gravity. Annals of Physics, 2002, 296, 1-50.	2.8	16
35	Global solutions in gravity. Nuclear Physics, Section B, Proceedings Supplements, 2000, 88, 233-236.	0.4	6
36	Scattering on Dislocations and Cosmic Strings in the Geometric Theory of Defects. Annals of Physics, 1999, 271, 203-232.	2.8	43

3

Μικήαιι Κατάναεν

#	Article	IF	CITATIONS
37	Global Properties of Warped Solutions in General Relativity. Annals of Physics, 1999, 276, 191-222.	2.8	28
38	Generalized supergravity in two dimensions. Nuclear Physics B, 1998, 530, 457-486.	2.5	3
39	Euclidean two-dimensional gravity with torsion. Journal of Mathematical Physics, 1997, 38, 946-980.	1.1	11
40	On the completeness of the black hole singularity in 2D dilaton theories. Nuclear Physics B, 1997, 486, 353-370.	2.5	56
41	Geometric interpretation and classification of global solutions in generalized dilaton gravity. Physical Review D, 1996, 53, 5609-5618.	4.7	47
42	Canonical quantization of the string with dynamical geometry and anomaly free nontrivial string in two dimensions. Nuclear Physics B, 1994, 416, 563-605.	2.5	16
43	New constraints in dynamical torsion theory. General Relativity and Gravitation, 1993, 25, 349-359.	2.0	8
44	All universal coverings of twoâ€dimensional gravity with torsion. Journal of Mathematical Physics, 1993, 34, 700-736.	1.1	31
45	Theory of defects in solids and three-dimensional gravity. Annals of Physics, 1992, 216, 1-28.	2.8	437
46	Conformal invariance, extremals, and geodesics in twoâ€dimensional gravity with torsion. Journal of Mathematical Physics, 1991, 32, 2483-2496.	1.1	32
47	Complete integrability of twoâ€dimensional gravity with dynamical torsion. Journal of Mathematical Physics, 1990, 31, 882-891.	1.1	34
48	Two-dimensional gravity with dynamical torsion and strings. Annals of Physics, 1990, 197, 1-32.	2.8	75
49	String with dynamical geometry. Hamiltonian analysis in conformal gauge. Theoretical and Mathematical Physics(Russian Federation), 1989, 80, 838-848.	0.9	6
50	Large-scale limit of dynamic-torsion theory. Soviet Physics Journal (English Translation of Izvestiia) Tj ETQq0 0 0 1	rgBT /Over	lock 10 Tf 50
51	Kinetic part of dynamical torsion theory. Theoretical and Mathematical Physics(Russian Federation), 1987, 72, 735-741.	0.9	2
52	Scalar fields and dynamical torsion in Kaluza-Klein theories. Theoretical and Mathematical Physics(Russian Federation), 1986, 66, 53-60.	0.9	7
53	Kinetic term for the Lorentz connection. Theoretical and Mathematical Physics(Russian Federation), 1985, 65, 1043-1050.	0.9	2
54	Linear connection in theories of Kaluza-Klein type. Theoretical and Mathematical Physics(Russian) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50

#	Article	IF	CITATIONS
55	Gauge theory for the Poincar� group. Theoretical and Mathematical Physics(Russian Federation), 1983, 54, 248-252.	0.9	10