Jerome Eeckhoute

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5852341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Model-based Analysis of ChIP-Seq (MACS). Genome Biology, 2008, 9, R137.	13.9	13,517
2	Genome-wide analysis of estrogen receptor binding sites. Nature Genetics, 2006, 38, 1289-1297.	9.4	1,227
3	Chromosome-Wide Mapping of Estrogen Receptor Binding Reveals Long-Range Regulation Requiring the Forkhead Protein FoxA1. Cell, 2005, 122, 33-43.	13.5	1,208
4	FoxA1 Translates Epigenetic Signatures into Enhancer-Driven Lineage-Specific Transcription. Cell, 2008, 132, 958-970.	13.5	863
5	Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nature Medicine, 2013, 19, 1039-1046.	15.2	361
6	Breast cancer risk–associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. Nature Genetics, 2012, 44, 1191-1198.	9.4	357
7	Positive Cross-Regulatory Loop Ties GATA-3 to Estrogen Receptor α Expression in Breast Cancer. Cancer Research, 2007, 67, 6477-6483.	0.4	317
8	Distinct but complementary contributions of PPAR isotypes to energy homeostasis. Journal of Clinical Investigation, 2017, 127, 1202-1214.	3.9	270
9	A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes and Development, 2006, 20, 2513-2526.	2.7	261
10	Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort study and a randomised study. Lancet, The, 2018, 391, 59-69.	6.3	244
11	Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Research, 2011, 21, 555-565.	2.4	196
12	Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers. Nucleic Acids Research, 2012, 40, 8255-8265.	6.5	166
13	Growth factor stimulation induces a distinct ERα cistrome underlying breast cancer endocrine resistance. Genes and Development, 2010, 24, 2219-2227.	2.7	156
14	Nuclear Receptor Subfamily 1 Group D Member 1 Regulates Circadian Activity of NLRP3 Inflammasome to Reduce the Severity of Fulminant Hepatitis in Mice. Gastroenterology, 2018, 154, 1449-1464.e20.	0.6	144
15	Pioneer factors: directing transcriptional regulators within the chromatin environment. Trends in Genetics, 2011, 27, 465-474.	2.9	138
16	Unique ERα Cistromes Control Cell Type-Specific Gene Regulation. Molecular Endocrinology, 2008, 22, 2393-2406.	3.7	119
17	Targeting NF-κB in Waldenstrom macroglobulinemia. Blood, 2008, 111, 5068-5077.	0.6	106
18	Cell-type selective chromatin remodeling defines the active subset of FOXA1-bound enhancers. Genome Research, 2009, 19, 372-380.	2.4	96

JEROME EECKHOUTE

#	Article	IF	CITATIONS
19	Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARα-regulated dermatopontin. JCI Insight, 2017, 2, .	2.3	96
20	Differential Estrogen-Regulation of CXCL12 Chemokine Receptors, CXCR4 and CXCR7, Contributes to the Growth Effect of Estrogens in Breast Cancer Cells. PLoS ONE, 2011, 6, e20898.	1.1	91
21	Definition of a FoxA1 Cistrome That Is Crucial for G1 to S-Phase Cell-Cycle Transit in Castration-Resistant Prostate Cancer. Cancer Research, 2011, 71, 6738-6748.	0.4	87
22	Hepatocyte Nuclear Factor 4α Isoforms Originated from the P1 Promoter Are Expressed in Human Pancreatic β-Cells and Exhibit Stronger Transcriptional Potentials than P2 Promoter-Driven Isoforms. Endocrinology, 2003, 144, 1686-1694.	1.4	78
23	Human Alternative Macrophages Populate Calcified Areas of Atherosclerotic Lesions and Display Impaired RANKL-Induced Osteoclastic Bone Resorption Activity. Circulation Research, 2017, 121, 19-30.	2.0	76
24	<i>FOXA1</i> Is a Potential Oncogene in Anaplastic Thyroid Carcinoma. Clinical Cancer Research, 2009, 15, 3680-3689.	3.2	75
25	A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation. Nucleic Acids Research, 2014, 42, 10943-10959.	6.5	71
26	Coactivator Function Defines the Active Estrogen Receptor Alpha Cistrome. Molecular and Cellular Biology, 2009, 29, 3413-3423.	1.1	68
27	Hepatocyte Nuclear Factor 4Â enhances the Hepatocyte Nuclear Factor 1Â-mediated activation of transcription. Nucleic Acids Research, 2004, 32, 2586-2593.	6.5	57
28	PPARalpha regulates the production of serum Vaninâ€1 by liver. FEBS Letters, 2013, 587, 3742-3748.	1.3	56
29	Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR). Hepatology, 2014, 59, 2022-2033.	3.6	55
30	Cell-Specific Dysregulation of MicroRNA Expression in Obese White Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 2821-2833.	1.8	55
31	Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. International Journal of Obesity, 2019, 43, 2381-2393.	1.6	47
32	The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis. Journal of Hepatology, 2018, 69, 1099-1109.	1.8	40
33	Control of Cell Identity by the Nuclear Receptor HNF4 in Organ Pathophysiology. Cells, 2020, 9, 2185.	1.8	40
34	Peroxisome Proliferator-activated Receptor Î ³ Regulates Genes Involved in Insulin/Insulin-like Growth Factor Signaling and Lipid Metabolism during Adipogenesis through Functionally Distinct Enhancer Classes. Journal of Biological Chemistry, 2014, 289, 708-722.	1.6	39
35	Hepatic Molecular Signatures Highlight the Sexual Dimorphism of Nonalcoholic Steatohepatitis (NASH). Hepatology, 2021, 73, 920-936.	3.6	39
36	The Nuclear Orphan Receptor Nur77 Is a Lipotoxicity Sensor Regulating Glucose-Induced Insulin Secretion in Pancreatic β-Cells. Molecular Endocrinology, 2012, 26, 399-413.	3.7	38

JEROME EECKHOUTE

#	Article	IF	CITATIONS
37	Maternal obesity programs increased leptin gene expression in rat male offspring via epigenetic modifications in a depot-specific manner. Molecular Metabolism, 2017, 6, 922-930.	3.0	37
38	Combinatorial regulation of hepatic cytoplasmic signaling and nuclear transcriptional events by the OGT/REV-ERBα complex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11033-E11042.	3.3	35
39	Loss of hepatocyte identity following aberrant YAP activation: A key mechanism in alcoholic hepatitis. Journal of Hepatology, 2021, 75, 912-923.	1.8	34
40	The RBM14/CoAA-interacting, long intergenic non-coding RNA Paral1 regulates adipogenesis and coactivates the nuclear receptor PPARÎ ³ . Scientific Reports, 2017, 7, 14087.	1.6	33
41	Coordinated Regulation of PPAR Expression and Activity through Control of Chromatin Structure in Adipogenesis and Obesity. PPAR Research, 2012, 2012, 1-9.	1.1	32
42	Peroxisome Proliferator–Activated Receptor-γ Activation Induces 11β-Hydroxysteroid Dehydrogenase Type 1 Activity in Human Alternative Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 677-685.	1.1	32
43	Glycogen Dynamics Drives Lipid Droplet Biogenesis during Brown Adipocyte Differentiation. Cell Reports, 2019, 29, 1410-1418.e6.	2.9	31
44	The neuron-derived orphan receptor 1 (NOR1) is induced upon human alternative macrophage polarization and stimulates the expression of markers of the M2 phenotype. Atherosclerosis, 2015, 241, 18-26.	0.4	30
45	Retinoids Issued from Hepatic Stellate Cell Lipid Droplet Loss as Potential Signaling Molecules Orchestrating a Multicellular Liver Injury Response. Cells, 2018, 7, 137.	1.8	30
46	Defining specificity of transcription factor regulatory activities. Journal of Cell Science, 2009, 122, 4027-4034.	1.2	22
47	The logic of transcriptional regulator recruitment architecture at <i>cis</i> -regulatory modules controlling liver functions. Genome Research, 2017, 27, 985-996.	2.4	22
48	Endoplasmic reticulum stress actively suppresses hepatic molecular identity in damaged liver. Molecular Systems Biology, 2020, 16, e9156.	3.2	22
49	Dynamic Estrogen Receptor Interactomes Control Estrogen-Responsive Trefoil Factor (TFF) Locus Cell-Specific Activities. Molecular and Cellular Biology, 2014, 34, 2418-2436.	1.1	20
50	Functional properties of the R154X HNF-4 $\hat{l}\pm$ protein generated by a mutation associated with maturity-onset diabetes of the young, type 1. FEBS Letters, 2000, 479, 41-45.	1.3	17
51	Reduced PPARÎ ³ 2 expression in adipose tissue of male rat offspring from obese dams is associated with epigenetic modifications. FASEB Journal, 2018, 32, 2768-2778.	0.2	17
52	Mutations in hepatocyte nuclear factor 4α (HNF4α) gene associated with diabetes result in greater loss of HNF4α function in pancreatic β-cells than in nonpancreatic β-cells and in reduced activation of the apolipoprotein CIII promoter in hepatic cells. Journal of Molecular Medicine, 2002, 80, 423-430.	1.7	16
53	Hepatocyte Nuclear Factor 4 Alpha Ligand Binding and F Domains Mediate Interaction and Transcriptional Synergy with the Pancreatic Islet LIM HD Transcription Factor Isl1. Journal of Molecular Biology, 2006, 364, 567-581.	2.0	15
54	Critical role of charged residues in helix 7 of the ligand binding domain in Hepatocyte Nuclear Factor 4Â dimerisation and transcriptional activity. Nucleic Acids Research, 2003, 31, 6640-6650.	6.5	14

JEROME EECKHOUTE

#	ARTICLE	IF	CITATIONS
55	Palmitate increases <i>Nur77</i> expression by modulating ZBP89 and Sp1 binding to the <i>Nur77</i> proximal promoter in pancreatic βâ€cells. FEBS Letters, 2013, 587, 3883-3890.	1.3	13
56	Inactivation of the Nuclear Orphan Receptor COUP-TFII by Small Chemicals. ACS Chemical Biology, 2017, 12, 654-663.	1.6	13
57	Maturity-Onset Diabetes of the Young Type 1 (MODY1)-Associated Mutations R154X and E276Q in Hepatocyte Nuclear Factor 4Â (HNF4Å) Gene Impair Recruitment of p300, a Key Transcriptional Coactivator. Molecular Endocrinology, 2001, 15, 1200-1210.	3.7	12
58	GIANT: galaxy-based tool for interactive analysis of transcriptomic data. Scientific Reports, 2020, 10, 19835.	1.6	11
59	Organizing combinatorial transcription factor recruitment at <i>cis</i> -regulatory modules. Transcription, 2018, 9, 233-239.	1.7	10
60	The ubiquitous transcription factor CTCF promotes lineage-specific epigenomic remodeling and establishment of transcriptional networks driving cell differentiation. Nucleus, 2015, 6, 15-18.	0.6	7
61	Transducinâ€like enhancer of splitâ€l is expressed and functional in human macrophages. FEBS Letters, 2016, 590, 43-52.	1.3	6
62	Perspectives on the use of super-enhancers as a defining feature of cell/tissue-identity genes. Epigenomics, 2020, 12, 715-723.	1.0	5
63	Peroxisome Proliferator-Activated Receptor <i>Ĵ³</i> Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1) in Human Macrophages. PPAR Research, 2016, 2016, 1-9.	1.1	4
64	Combining Chromatin Immunoprecipitation and Oligonucleotide Tiling Arrays (ChIP-Chip) for Functional Genomic Studies. Methods in Molecular Biology, 2009, 556, 155-164.	0.4	3
65	SAT-155 Temporal Activation of the Unfolded Protein Response and Concomitant Downregulation of Key Hepatic Transcription Factors in Critical Illness. Journal of the Endocrine Society, 2019, 3, .	0.1	0
66	The conundrum of the functional relationship between transcription factors and chromatin. Epigenomics, 2022, , .	1.0	0