Isabel Perez-Otaño

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5852293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature, 1998, 392, 601-605.	27.8	450
2	Homeostatic plasticity and NMDA receptor trafficking. Trends in Neurosciences, 2005, 28, 229-238.	8.6	319
3	Assembly with the NR1 Subunit Is Required for Surface Expression of NR3A-Containing NMDA Receptors. Journal of Neuroscience, 2001, 21, 1228-1237.	3.6	237
4	Phenylbutyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. Hippocampus, 2012, 22, 1040-1050.	1.9	218
5	Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nature Neuroscience, 2006, 9, 611-621.	14.8	179
6	Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain. Journal of Comparative Neurology, 2002, 450, 303-317.	1.6	161
7	Emerging roles of GluN3-containing NMDA receptors in the CNS. Nature Reviews Neuroscience, 2016, 17, 623-635.	10.2	135
8	Influence of the NR3A subunit on NMDA receptor functions. Progress in Neurobiology, 2010, 91, 23-37.	5.7	134
9	Downregulation of NR3A-Containing NMDARs Is Required for Synapse Maturation and Memory Consolidation. Neuron, 2009, 63, 342-356.	8.1	131
10	NR3A-containing NMDARs promote neurotransmitter release and spike timing–dependent plasticity. Nature Neuroscience, 2011, 14, 338-344.	14.8	122
11	Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models. Nature Medicine, 2013, 19, 1030-1038.	30.7	108
12	Learning from NMDA Receptor Trafficking: Clues to the Development and Maturation of Glutamatergic Synapses. NeuroSignals, 2004, 13, 175-189.	0.9	100
13	Expression of Cocaine-Evoked Synaptic Plasticity by GluN3A-Containing NMDA Receptors. Neuron, 2013, 80, 1025-1038.	8.1	97
14	Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer's disease. Journal of Clinical Investigation, 2013, 123, 2523-2538.	8.2	96
15	Induction of NF-kB-like transcription factors in brain areas susceptible to kainate toxicity. Glia, 1996, 16, 306-315.	4.9	70
16	Generation and Analysis of GluR5(Q636R) Kainate Receptor Mutant Mice. Journal of Neuroscience, 1999, 19, 8757-8764.	3.6	68
17	The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes. Journal of Physiology, 2010, 588, 3403-3414.	2.9	60
18	An Arginine Stretch Limits ADAM10 Exit from the Endoplasmic Reticulum. Journal of Biological Chemistry, 2010, 285, 10376-10384.	3.4	53

ISABEL PEREZ-OTAñO

#	Article	IF	CITATIONS
19	Genetic Deletion of NR3A Accelerates Glutamatergic Synapse Maturation. PLoS ONE, 2012, 7, e42327.	2.5	43
20	MPTP-Parkinsonism is accompanied by persistent expression of a Δ-FosB-like protein in dopaminergic pathways. Molecular Brain Research, 1998, 53, 41-52.	2.3	41
21	GluN3A Promotes Dendritic Spine Pruning and Destabilization during Postnatal Development. Journal of Neuroscience, 2014, 34, 9213-9221.	3.6	40
22	MPTP selectively induces haem oxygenase-1 expression in striatal astrocytes. European Journal of Neuroscience, 2000, 12, 1573-1583.	2.6	39
23	GluN3A expression restricts spine maturation via inhibition of GIT1/Rac1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20807-20812.	7.1	39
24	Tyrosine Phosphorylation Regulates the Endocytosis and Surface Expression of GluN3A-Containing NMDA Receptors. Journal of Neuroscience, 2013, 33, 4151-4164.	3.6	36
25	Elevated synaptic vesicle release probability in synaptophysin/gyrin family quadruple knockouts. ELife, 2019, 8, .	6.0	36
26	A New Kinetic Framework for Synaptic Vesicle Trafficking Tested in Synapsin Knock-Outs. Journal of Neuroscience, 2011, 31, 11563-11577.	3.6	31
27	Casein Kinase 2 Phosphorylation of Protein Kinase C and Casein Kinase 2 Substrate in Neurons (PACSIN) 1 Protein Regulates Neuronal Spine Formation. Journal of Biological Chemistry, 2013, 288, 9303-9312.	3.4	28
28	The NMDA receptor subunit GluN3A protects against 3-nitroproprionic-induced striatal lesions via inhibition of calpain activation. Neurobiology of Disease, 2012, 48, 290-298.	4.4	25
29	GluN3A promotes NMDA spiking by enhancing synaptic transmission in Huntington's disease models. Neurobiology of Disease, 2016, 93, 47-56.	4.4	23
30	Temporal Dynamics and Neuronal Specificity of Grin3a Expression in the Mouse Forebrain. Cerebral Cortex, 2021, 31, 1914-1926.	2.9	23
31	GluN3A excitatory glycine receptors control adult cortical and amygdalar circuits. Neuron, 2022, 110, 2438-2454.e8.	8.1	20
32	GluN3A NMDA receptor subunits: more enigmatic than ever?. Journal of Physiology, 2022, 600, 261-276.	2.9	17
33	RNAi-Based CluN3A Silencing Prevents and Reverses Disease Phenotypes Induced by Mutant huntingtin. Molecular Therapy, 2018, 26, 1965-1972.	8.2	13
34	Increased Levels of Rictor Prevent Mutant Huntingtin-Induced Neuronal Degeneration. Molecular Neurobiology, 2018, 55, 7728-7742.	4.0	12
35	Modulation of GluN3A Expression in Huntington Disease. JAMA Neurology, 2015, 72, 468.	9.0	11
36	Presynaptic NMDARs and astrocytes ally to control circuit-specific information flow. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13166-13168.	7.1	9

#	Article	IF	CITATIONS
37	Sparse force-bearing bridges between neighboring synaptic vesicles. Brain Structure and Function, 2019, 224, 3263-3276.	2.3	7
38	Control of protein synthesis and memory by GluN3A-NMDA receptors through inhibition of GIT1/mTORC1 assembly. ELife, 2021, 10, .	6.0	6
39	Neurotoxic effect of prenatal exposure to MPTP on the dopaminergic systems of the marmoset brain. European Journal of Pharmacology, 1992, 217, 211-213.	3.5	5
40	Induction of NFâ€kBâ€like transcription factors in brain areas susceptible to kainate toxicity. Glia, 1996, 16, 306-315.	4.9	5
41	Building Bridges through Science. Neuron, 2017, 96, 730-735.	8.1	2
42	MPTP and neurotoxins induced neuronal cell death. , 1993, , 105-122.		2