
Christian Lexer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5851808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Major Ecological Transitions in Wild Sunflowers Facilitated by Hybridization. Science, 2003, 301, 1211-1216.	6.0	1,066
2	Sympatric speciation in palms on an oceanic island. Nature, 2006, 441, 210-213.	13.7	527
3	Crossâ€species transfer of nuclear microsatellite markers: potential and limitations. Molecular Ecology, 2007, 16, 3759-3767.	2.0	374
4	Hybridization and the colonization of novel habitats by annual sunflowers. Genetica, 2007, 129, 149-165.	0.5	345
5	Pollen dispersal inferred from paternity analysis in a mixed oak stand ofQuercus roburL. andQ. petraea(Matt.) Liebl Molecular Ecology, 1999, 8, 831-841.	2.0	286
6	Identification and characterization of (GA/CT)n-microsatellite loci from Quercus petraea. Plant Molecular Biology, 1997, 33, 1093-1096.	2.0	261
7	Evolution of reproductive isolation in plants. Heredity, 2009, 102, 31-38.	1.2	245
8	Adaptive introgression: a plant perspective. Biology Letters, 2018, 14, 20170688.	1.0	220
9	Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends in Ecology and Evolution, 2001, 16, 267-269.	4.2	197
10	Characterization of (GA)n Microsatellite Loci from Quercus Robur. Hereditas, 2004, 129, 183-186.	0.5	192
11	Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): the role of ecology and life history in gene introgression. Molecular Ecology, 2005, 14, 1045-1057.	2.0	192
12	Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: Implications for the origin of Helianthus paradoxus , a diploid hybrid species. Molecular Ecology, 2003, 12, 1225-1235.	2.0	170
13	Admixture as the basis for genetic mapping. Trends in Ecology and Evolution, 2008, 23, 686-694.	4.2	149
14	THE ORIGIN OF ECOLOGICAL DIVERGENCE IN HELIANTHUS PARADOXUS (ASTERACEAE): SELECTION ON TRANSGRESSIVE CHARACTERS IN A NOVEL HYBRID HABITAT. Evolution; International Journal of Organic Evolution, 2003, 57, 1989-2000.	1.1	144
15	Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Molecular Ecology, 2011, 20, 3185-3201.	2.0	138
16	EXPERIMENTAL HYBRIDIZATION AS A TOOL FOR STUDYING SELECTION IN THE WILD. Ecology, 2003, 84, 1688-1699.	1.5	132
17	Conservation of (GA) n microsatellite loci between Quercus species. Molecular Ecology, 1997, 6, 1189-1194.	2.0	129
18	Population differentiation and species cohesion in two closely related plants adapted to neotropical high-altitude ?inselbergs?, Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae). Molecular Ecology, 2007, 16, 1981-1992.	2.0	126

#	Article	IF	CITATIONS
19	The genic view of plant speciation: recent progress and emerging questions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3023-3036.	1.8	126
20	A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theoretical and Applied Genetics, 1998, 97, 1090-1103.	1.8	125
21	Genomic scan for single nucleotide polymorphisms reveals patterns of divergence and gene flow between ecologically divergent species. Molecular Ecology, 2013, 22, 842-855.	2.0	110
22	Admixture facilitates adaptation from standing variation in the European aspen (<i>Populus) Tj ETQq0 0 0 rgBT</i>	/Overlock 2.0	10 Tf 50 622 108
23	Admixture in European Populus hybrid zones makes feasible the mapping of loci that contribute to reproductive isolation and trait differences. Heredity, 2007, 98, 74-84.	1.2	103
24	Small-scale patterns in snowmelt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea. Heredity, 2014, 113, 233-239.	1.2	101
25	The Response of the Alpine Dwarf Shrub Salix herbacea to Altered Snowmelt Timing: Lessons from a Multi-Site Transplant Experiment. PLoS ONE, 2015, 10, e0122395.	1.1	101
26	Range-wide patterns of nuclear and chloroplast DNA diversity in Vriesea gigantea (Bromeliaceae), a neotropical forest species. Heredity, 2009, 103, 503-512.	1.2	99
27	Evolutionary potential in the Alpine: trait heritabilities and performance variation of the dwarf willow <i>Salix herbacea</i> from different elevations and microhabitats. Ecology and Evolution, 2016, 6, 3940-3952.	0.8	98
28	Selection against recombinant hybrids maintains reproductive isolation in hybridizing <i>Populus</i> species despite F ₁ fertility and recurrent gene flow. Molecular Ecology, 2016, 25, 2482-2498.	2.0	95
29	Hybridization and introgression across different ploidy levels in the Neotropical orchids <i>Epidendrum fulgens</i> and <i>E.Âpuniceoluteum</i> (Orchidaceae). Molecular Ecology, 2010, 19, 3981-3994.	2.0	94
30	Shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Molecular Ecology, 2006, 15, 2007-2012.	2.0	93
31	Genomic Admixture Analysis in European Populus spp. Reveals Unexpected Patterns of Reproductive Isolation and Mating. Genetics, 2010, 186, 699-712.	1.2	88
32	Genomic and functional approaches reveal a case of adaptive introgression from <i>Populus balsamifera</i> (balsam poplar) in <i>P</i> .Â <i>trichocarpa</i> (black cottonwood). Molecular Ecology, 2016, 25, 2427-2442.	2.0	85
33	Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding. Molecular Ecology, 2017, 26, 706-717.	2.0	85
34	Adaptation to environmental stress: a rare or frequent driver of speciation?. Journal of Evolutionary Biology, 2005, 18, 893-900.	0.8	83
35	Patterns of variability and gene flow in Medicago citrina, an endangered endemic of islands in the western Mediterranean, as revealed by amplified fragment length polymorphism (AFLP). Molecular Ecology, 2004, 13, 2679-2690.	2.0	78
36	Candidate gene polymorphisms associated with salt tolerance in wild sunflower hybrids: implications for the origin of Helianthus paradoxus , a diploid hybrid species. New Phytologist, 2004, 161, 225-233.	3.5	78

#	Article	IF	CITATIONS
37	Molecular phylogenetics of the Brazilian giant bromeliads (Alcantarea, Bromeliaceae): implications for morphological evolution and biogeography. Molecular Phylogenetics and Evolution, 2012, 64, 177-189.	1.2	77
38	Genomic and phenotypic architecture of a spruce hybrid zone (<i><scp>P</scp>icea) Tj ETQq0 0 0 rgBT /Overlock</i>	≥ 10 Tf 50 2.0	702 Td (sitc

39	SELECTION ON LEAF ECOPHYSIOLOGICAL TRAITS IN A DESERT HYBRID HELIANTHUS SPECIES AND EARLY-GENERATION HYBRIDS. Evolution; International Journal of Organic Evolution, 2004, 58, 2682-2692.	1.1	74
40	Adaptive evolution and segregating load contribute to the genomic landscape of divergence in two tree species connected by episodic gene flow. Molecular Ecology, 2017, 26, 59-76.	2.0	74
41	Hybridization and conservation of Mediterranean orchids: Should we protect the orchid hybrids or the orchid hybrid zones?. Biological Conservation, 2006, 129, 14-23.	1.9	73
42	Phylogeography and genetic differentiation along the distributional range of the orchid Epidendrum fulgens: a Neotropical coastal species not restricted to glacial refugia. Journal of Biogeography, 2011, 38, 1923-1935.	1.4	72
43	Genetic relationships and variation in reproductive strategies in four closely related bromeliads adapted to neotropical â€ïnselbergs': Alcantarea glaziouana, A. regina, A. geniculata and A. imperialis (Bromeliaceae). Annals of Botany, 2009, 103, 65-77.	1.4	70
44	Reconstructing the Origin ofHelianthus deserticola: Survival and Selection on the Desert Floor. American Naturalist, 2004, 164, 145-156.	1.0	64
45	Genetics of Species Differences in the Wild Annual Sunflowers, Helianthus annuus and H. petiolaris. Genetics, 2005, 169, 2225-2239.	1.2	64
46	Unexpected ancestry of <i>Populus</i> seedlings from a hybrid zone implies a large role for postzygotic selection in the maintenance of species. Molecular Ecology, 2014, 23, 4316-4330.	2.0	64
47	Pollen–pistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus (Oxford ragwort). Annals of Botany, 2011, 108, 687-698.	1.4	61
48	The bracteatus pineapple genome and domestication of clonally propagated crops. Nature Genetics, 2019, 51, 1549-1558.	9.4	60
49	Clonality and spatial genetic structure in <i>Populus</i> Â×Â <i>canescens</i> and its sympatric backcross parent <i>P. alba </i> in a Central European hybrid zone. New Phytologist, 2008, 177, 506-516.	3.5	59
50	Towards the era of comparative evolutionary genomics in Brassicaceae. Plant Systematics and Evolution, 2006, 259, 175-198.	0.3	55
51	A set of polymorphic microsatellite loci forVriesea giganteaandAlcantarea imperialis(Bromeliaceae) and cross-amplification in other bromeliad species. Molecular Ecology Notes, 2007, 7, 654-657.	1.7	53
52	Polymorphism of postmating reproductive isolation within plant species. Taxon, 2010, 59, 1367-1374.	0.4	53
53	â€~Next generation' biogeography: towards understanding the drivers of species diversification and persistence. Journal of Biogeography, 2013, 40, 1013-1022.	1.4	53
54	Genetic architecture of traits associated with serpentine adaptation of Silene vulgaris. Journal of Evolutionary Biology, 2006, 19, 1149-1156.	0.8	51

#	Article	IF	CITATIONS
55	Within-population spatial genetic structure in four naturally fragmented species of a neotropical inselberg radiation, Alcantarea imperialis, A. geniculata, A. glaziouana and A. regina (Bromeliaceae). Heredity, 2008, 101, 285-296.	1.2	51
56	Phylogeography of Populus alba (L.) and Populus tremula (L.) in Central Europe: secondary contact and hybridisation during recolonisation from disconnected refugia. Tree Genetics and Genomes, 2010, 6, 439-450.	0.6	51
57	Hybrid zones as a tool for identifying adaptive genetic variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp.). Forest Ecology and Management, 2004, 197, 49-64.	1.4	50
58	Genetic diversity in Cypripedium calceolus (Orchidaceae) with a focus on north-western Europe, as revealed by plastid DNA length polymorphisms. Annals of Botany, 2009, 104, 517-525.	1.4	49
59	Differential introgression reveals candidate genes for selection across a spruce (<i><scp>P</scp>icea) Tj ETQq1 1</i>	0,78431 3.5	4 rgBT /Ove
60	The use of digital imageâ€based morphometrics to study the phenotypic mosaic in taxa with porous genomes. Taxon, 2009, 58, 349-364.	0.4	46
61	Recombinant hybrids retain heterozygosity at many loci: new insights into the genomics of reproductive isolation in <i><scp>P</scp>opulus</i> . Molecular Ecology, 2012, 21, 5042-5058.	2.0	46
62	Mating system variation in hybrid zones: facilitation, barriers and asymmetries to gene flow. New Phytologist, 2019, 224, 1035-1047.	3.5	46
63	Genomics of the divergence continuum in an African plant biodiversity hotspot, I: drivers of population divergence in <i>Restio capensis</i> (Restionaceae). Molecular Ecology, 2014, 23, 4373-4386.	2.0	45
64	A dedicated target capture approach reveals variable genetic markers across micro―and macroâ€evolutionary time scales in palms. Molecular Ecology Resources, 2019, 19, 221-234.	2.2	42
65	Response to salinity in the homoploid hybrid species Helianthus paradoxus and its progenitors H. annuus and H. petiolaris. New Phytologist, 2006, 170, 615-629.	3.5	41
66	EFFECTS OF A FIRE RESPONSE TRAIT ON DIVERSIFICATION IN REPLICATED RADIATIONS. Evolution; International Journal of Organic Evolution, 2014, 68, 453-465.	1.1	40
67	Genomeâ€wide patterns of differentiation and spatially varying selection between postglacial recolonization lineages of <i>Populus alba</i> (Salicaceae), a widespread forest tree. New Phytologist, 2015, 207, 723-734.	3.5	40
68	Targeted Capture of Hundreds of Nuclear Genes Unravels Phylogenetic Relationships of the Diverse Neotropical Palm Tribe Geonomateae. Frontiers in Plant Science, 2019, 10, 864.	1.7	40
69	COMPONENTS OF REPRODUCTIVE ISOLATION BETWEEN ORCHIS MASCULA AND ORCHIS PAUCIFLORA. Evolution; International Journal of Organic Evolution, 2013, 67, 2083-2093.	1.1	39
70	Trophic specialization influences the rate of environmental niche evolution in damselfishes (Pomacentridae). Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3662-3669.	1.2	37
71	Introgression from <i>Populus balsamifera</i> underlies adaptively significant variation and range boundaries in <i>P.Âtrichocarpa</i> . New Phytologist, 2018, 217, 416-427.	3.5	36
72	Admixture mapping of quantitative traits in Populus hybrid zones: power and limitations. Heredity, 2013, 111, 474-485.	1.2	35

#	Article	IF	CITATIONS
73	Reconstructing the History of Selection during Homoploid Hybrid Speciation. American Naturalist, 2007, 169, 725-737.	1.0	34
74	Molecular ecology studies of species radiations: current research gaps, opportunities and challenges. Molecular Ecology, 2017, 26, 2608-2622.	2.0	34
75	Estimating and accounting for genotyping errors in RADâ€seq experiments. Molecular Ecology Resources, 2020, 20, 856-870.	2.2	34
76	How sympatric is speciation in the <i>Howea</i> palms of Lord Howe Island?. Molecular Ecology, 2009, 18, 3629-3638.	2.0	33
77	Isolation and characterization of microsatellite loci in <i>Pitcairnia albiflos</i> (Bromeliaceae), an endemic bromeliad from the Atlantic Rainforest, and crossâ€amplification in other species. Molecular Ecology Resources, 2008, 8, 980-982.	2.2	30
78	Microsatellite signature of ecological selection for salt tolerance in a wild sunflower hybrid species, Helianthus paradoxus. Molecular Ecology, 2006, 15, 4623-4634.	2.0	29
79	Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species. Heredity, 2011, 107, 478-486.	1.2	29
80	A genetic linkage map of Silene vulgaris based on AFLP markers. Genome, 2006, 49, 320-327.	0.9	28
81	Comparative Analysis of Pistil Transcriptomes Reveals Conserved and Novel Genes Expressed in Dry, Wet, and Semidry Stigmas Â. Plant Physiology, 2010, 154, 1347-1360.	2.3	27
82	Genetic structure and introgression in riparian populations of <i>Populus alba</i> L. Plant Biosystems, 2010, 144, 656-668.	0.8	27
83	Gene flow and diversification in a species complex of <i>Alcantarea</i> inselberg bromeliads. Botanical Journal of the Linnean Society, 2016, 181, 505-520.	0.8	26
84	Contact Zones: Natural Labs for Studying Evolutionary Transitions. Current Biology, 2006, 16, R407-R409.	1.8	25
85	Mating system variation and assortative mating of sympatric bromeliads (<i>Pitcairnia</i> spp.) endemic to neotropical inselbergs. American Journal of Botany, 2015, 102, 758-764.	0.8	25
86	Scale and direction of adaptive introgression between black cottonwood (<i>Populus) Tj ETQq0 0 0 rgBT /Over</i>	ock 10 Tf ! 2.0	50 222 Td (tri
87	Effects of Hybridization and Evolutionary Constraints on Secondary Metabolites: The Genetic Architecture of Phenylpropanoids in European Populus Species. PLoS ONE, 2015, 10, e0128200.	1.1	25
88	A Preliminary Study of Genetic Variation in Populations of Monstera adansonii var. klotzschiana (Araceae) from North-East Brazil, Estimated with AFLP Molecular Markers. Annals of Botany, 2007, 100, 1143-1154.	1.4	24
89	Taxonâ€specific or universal? Using target capture to study the evolutionary history of rapid radiations. Molecular Ecology Resources, 2022, 22, 927-945.	2.2	24
90	Systematics of Vriesea (Bromeliaceae): phylogenetic relationships based on nuclear gene and partial plastome sequences. Botanical Journal of the Linnean Society, 2020, 192, 656-674.	0.8	23

#	Article	IF	CITATIONS
91	Genetic diversity and differentiation in natural and reintroduced populations of <i>Bencomia exstipulata</i> and comparisons with <i>B. caudata</i> (Rosaceae) in the Canary Islands: an analysis using microsatellites. Botanical Journal of the Linnean Society, 2009, 160, 429-441.	0.8	22
92	Admixture mapping in interspecific <i>Populus</i> hybrids identifies classes of genomic architectures for phytochemical, morphological and growth traits. New Phytologist, 2019, 223, 2076-2089.	3.5	21
93	Genetic variation in natural populations ofAnthurium sinuatumandA. pentaphyllumvar.pentaphyllum(Araceae) from north-east Brazil using AFLP molecular markers. Botanical Journal of the Linnean Society, 2009, 159, 88-105.	0.8	20
94	Microsatellite analysis of maternal half-sib families of Quercus robur, pedunculate oak: detection of seed contaminations and inference of the seed parents from the offspring. Theoretical and Applied Genetics, 1999, 99, 185-191.	1.8	19
95	Chloroplast microsatellite markers for the Neotropical orchid genus Epidendrum, and cross-amplification in other Laeliinae species (Orchidaceae). Conservation Genetics Resources, 2009, 1, 505-511.	0.4	19
96	Adaptive Introgression Facilitates Adaptation to High Latitudes in European Aspen (<i>Populus) Tj ETQq0 0 0 rgf</i>	3T ¦Overlo	ck 10 Tf 50 5 19
97	Microsatellite analysis of maternal half-sib families of Quercus robur, pedunculate oak: II. inferring the number of pollen donors from the offspring. Theoretical and Applied Genetics, 2000, 100, 858-865.	1.8	16
98	THE ORIGIN OF ECOLOGICAL DIVERGENCE IN HELIANTHUS PARADOXUS (ASTERACEAE): SELECTION ON TRANSGRESSIVE CHARACTERS IN A NOVEL HYBRID HABITAT. Evolution; International Journal of Organic Evolution, 2003, 57, 1989.	1.1	16
99	Limited pollen flow and high selfing rates toward geographic range limit in an Atlantic forest bromeliad. Flora: Morphology, Distribution, Functional Ecology of Plants, 2015, 211, 1-10.	0.6	16
100	Evolution of strong reproductive isolation in plants: broad-scale patterns and lessons from a perennial model group. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190544.	1.8	16
101	Genomic footprints of repeated evolution of <scp>CAM</scp> photosynthesis in a Neotropical species radiation. Plant, Cell and Environment, 2020, 43, 2987-3001.	2.8	15
102	Genome Skimming Reveals Widespread Hybridization in a Neotropical Flowering Plant Radiation. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	15
103	Fluctuating selection across years and phenotypic variation in food-deceptive orchids. PeerJ, 2017, 5, e3704.	0.9	15
104	Genetic Architecture of Leaf Ecophysiological Traits in Helianthus. Journal of Heredity, 2007, 98, 142-146.	1.0	13
105	Sympatric plant speciation in islands? (Reply). Nature, 2006, 443, E12-E13.	13.7	12
106	A set of novel DNA polymorphisms within candidate genes potentially involved in ecological divergence between Populus alba and P. tremula, two hybridizing European forest trees. Molecular Ecology Resources, 2008, 8, 188-192.	2.2	12
107	Effects of interspecific recombination on functional traits in trees revealed by metabolomics and genotyping-by-resequencing. Plant Ecology and Diversity, 2012, 5, 457-471.	1.0	10
108	Figured grain in aspen is heritable and not affected by graft-transmissible signals. Trees - Structure and Function, 2013, 27, 973-983.	0.9	10

#	Article	IF	CITATIONS
109	SELECTION ON LEAF ECOPHYSIOLOGICAL TRAITS IN A DESERT HYBRID HELIANTHUS SPECIES AND EARLY-GENERATION HYBRIDS. Evolution; International Journal of Organic Evolution, 2004, 58, 2682.	1.1	9
110	Whole genome sequencing (WCS) meets biogeography and shows that genomic selection in forest trees is feasible. New Phytologist, 2012, 196, 652-654.	3.5	9
111	Some like it cold: distribution, ecology and phylogeny of ArenariaÂbernensis Favarger (Caryophyllaceae) from the western Prealps in Switzerland. Alpine Botany, 2013, 123, 65-75.	1.1	9
112	Resprouter fraction in Cape Restionaceae assemblages varies with climate and soil type. Functional Ecology, 2016, 30, 1583-1592.	1.7	9
113	Isolation and characterization of microsatellite loci inBencomia exstipulataandB. caudata(Rosaceae). Molecular Ecology Notes, 2004, 4, 130-132.	1.7	7
114	Characterisation of sunflower-21 (SF21) genes expressed in pollen and pistil of Senecio squalidus (Asteraceae) and their relationship with other members of the SF21 gene family. Sexual Plant Reproduction, 2010, 23, 173-186.	2.2	7
115	Causes and consequences of large clonal assemblies in a poplar hybrid zone. Molecular Ecology, 2016, 25, 5330-5344.	2.0	7
116	Spatial and Ecological Drivers of Genetic Structure in Greek Populations of Alkanna tinctoria (Boraginaceae), a Polyploid Medicinal Herb. Frontiers in Plant Science, 2021, 12, 706574.	1.7	7
117	Patterns of genetic diversity and differentiation in resistance gene clusters of two hybridizing European Populus species. Tree Genetics and Genomes, 2015, 11, 1.	0.6	5
118	The low-copy nuclear gene Agt1 as a novel DNA barcoding marker for Bromeliaceae. BMC Plant Biology, 2020, 20, 111.	1.6	5
119	Phenotypic expression of floral traits in hybrid zones provides insights into their genetic architecture. New Phytologist, 2020, 227, 967-975.	3.5	5
120	Integrating the â€~genomic mosaic' view of species into studies of biotic interactions: a comment on Bernhardsson <i>etÂal</i> . (). Ecology Letters, 2013, 16, 1515.	3.0	3
121	Development of novel microsatellite markers for Alkanna tinctoria Âby comparative transcriptomics. Applications in Plant Sciences, 2019, 7, e11296.	0.8	3
122	Tracing the recombination and colonization history of hybrid species in space and time. Molecular Ecology, 2011, 20, 3701-3704.	2.0	2
123	Conservation Genomics. , 2010, , 349-368.		2
124	Reconstructing the History of Selection during Homoploid Hybrid Speciation. American Naturalist, 2007, 169, 725.	1.0	2
125	Spatiotemporal Variation on Fertility, Mating System, and Gene Flow in Vriesea gigantea (Bromeliaceae), an Atlantic Forest Species. Frontiers in Forests and Global Change, 0, 5, .	1.0	2
126	Molecular Markers in Plant Genetics and Biotechnology. Kew Bulletin, 2004, 59, 334.	0.4	1

#	Article	IF	CITATIONS
127	Reconstructing the Origin of Helianthus deserticola: Survival and Selection on the Desert Floor. American Naturalist, 2004, 164, 145.	1.0	1