Marcia Eugenia Amaral Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5851707/publications.pdf

Version: 2024-02-01

48 papers 2,904 citations

279798 23 h-index 42 g-index

50 all docs

50 docs citations

50 times ranked

3019 citing authors

#	Article	IF	CITATIONS
1	Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 2005, 32, 481.	2.1	933
2	Plants facing oxidative challenges—A little help from the antioxidant networks. Environmental and Experimental Botany, 2019, 161, 4-25.	4.2	277
3	The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. Phytochemistry, 1997, 46, 395-419.	2.9	178
4	Sulfur Metabolism and Stress Defense Responses in Plants. Tropical Plant Biology, 2015, 8, 60-73.	1.9	165
5	Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. Plant Physiology and Biochemistry, 2012, 56, 79-96.	5.8	153
6	Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environmental and Experimental Botany, 2009, 67, 387-394.	4.2	137
7	Hormesis in plants under Cd exposure: From toxic to beneficial element?. Journal of Hazardous Materials, 2020, 384, 121434.	12.4	131
8	Biochemical responses of the ethylene-insensitive Never ripe tomato mutant subjected to cadmium and sodium stresses. Environmental and Experimental Botany, 2011, 71, 306-320.	4.2	128
9	What is new in the research on cadmiumâ€induced stress in plants?. Food and Energy Security, 2012, 1, 133-140.	4.3	69
10	Regulation of maize lysine metabolism and endosperm protein synthesis by opaque and floury mutations. FEBS Journal, 2003, 270, 4898-4908.	0.2	68
11	Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. Protoplasma, 2017, 254, 771-783.	2.1	58
12	Citrus rootstocks regulate the nutritional status and antioxidant system of trees under copper stress. Environmental and Experimental Botany, 2016, 130, 42-52.	4.2	52
13	Estimating tomato tolerance to heavy metal toxicity: cadmium as study case. Environmental Science and Pollution Research, 2018, 25, 27535-27544.	5.3	46
14	Nutritional status and root morphology of tomato under Cd-induced stress: Comparing contrasting genotypes for metal-tolerance. Scientia Horticulturae, 2019, 246, 518-527.	3.6	40
15	Cadmium exposure triggers genotype-dependent changes in seed vigor and germination of tomato offspring. Protoplasma, 2018, 255, 989-999.	2.1	33
16	New insights about cadmium impacts on tomato: Plant acclimation, nutritional changes, fruit quality and yield. Food and Energy Security, 2018, 7, e00131.	4.3	31
17	Dealing with abiotic stresses: an integrative view of how phytohormones control abiotic stress-induced oxidative stress. Theoretical and Experimental Plant Physiology, 2017, 29, 109-127.	2.4	30
18	Relationship between Mg, B and Mn status and tomato tolerance against Cd toxicity. Journal of Environmental Management, 2019, 240, 84-92.	7.8	30

#	Article	IF	Citations
19	Is seaweed extract an elicitor compound? Changing proline content in drought-stressed bean plants. Comunicata Scientiae, 2018, 9, 292-297.	0.4	27
20	Evaluation of silicon influence on the mitigation of cadmium-stress in the development of Arabidopsis thaliana through total metal content, proteomic and enzymatic approaches. Journal of Trace Elements in Medicine and Biology, 2017, 44, 50-58.	3.0	26
21	Cadmium toxicity and its relationship with disturbances in the cytoskeleton, cell cycle and chromosome stability. Ecotoxicology, 2019, 28, 1046-1055.	2.4	26
22	Cadmium-induced transgenerational effects on tomato plants: A gift from parents to progenies. Science of the Total Environment, 2021, 789, 147885.	8.0	26
23	Cadmium toxicity degree on tomato development is associated with disbalances in B and Mn status at early stages of plant exposure. Ecotoxicology, 2018, 27, 1293-1302.	2.4	24
24	The sweet side of misbalanced nutrients in cadmiumâ€stressed plants. Annals of Applied Biology, 2020, 176, 275-284.	2.5	24
25	Integrating Optical Imaging Tools for Rapid and Non-invasive Characterization of Seed Quality: Tomato (Solanum lycopersicum L.) and Carrot (Daucus carota L.) as Study Cases. Frontiers in Plant Science, 2020, 11, 577851.	3.6	24
26	Lysine metabolism in antisense C-hordein barley grains. Plant Physiology and Biochemistry, 2015, 87, 73-83.	5.8	16
27	Cadmium effects on plant reproductive organs: Physiological, productive, evolutionary and ecological aspects. Annals of Applied Biology, 2021, 178, 227-243.	2.5	16
28	Autofluorescence-spectral imaging as an innovative method for rapid, non-destructive and reliable assessing of soybean seed quality. Scientific Reports, 2021, 11, 17834.	3.3	16
29	Lysine metabolism and amino acid profile in maize grains from plants subjected to cadmium exposure. Scientia Agricola, 2020, 77, .	1.2	15
30	Are plant growth retardants a strategy to decrease lodging and increase yield of sunflower?. Comunicata Scientiae, 2016, 7, 154.	0.4	12
31	Antioxidant Defense Response in Plants to Cadmium Stress. , 2019, , 423-461.		11
32	There is plenty of room at the plant science: A review of nanoparticles applied to plant cultures. Annals of Applied Biology, 2021, 178, 149-168.	2.5	11
33	Dihydrodipicolinate synthase in opaque and floury maize mutants. Plant Science, 2007, 173, 458-467.	3.6	10
34	Maize plants have different strategies to protect their developing seeds against cadmium toxicity. Theoretical and Experimental Plant Physiology, 2020, 32, 203-211.	2.4	9
35	Effect of biostimulant application on production and flavonoid content of marigold (Calendula) Tj ETQq $1\ 1\ 0.78^2$	4314 rgBT 0.4	Oyerlock 10
36	Ascophyllum nodosum extract improves phenolic compound content and antioxidant activity of medicinal and functional food plant Achillea millefolium L Australian Journal of Crop Science, 2019, 13, 418-423.	0.3	8

#	Article	IF	CITATIONS
37	Exogenous arginine modulates leaf antioxidant enzymes and hydrogen peroxide content in tomato plants under transient heat stresses. Bragantia, 0, 80, .	1.3	6
38	Sweetpotato tolerance to drought is associated to leaf concentration of total chlorophylls and polyphenols. Theoretical and Experimental Plant Physiology, 2021, 33, 385.	2.4	5
39	Plants under attack: Surviving the stress. Annals of Applied Biology, 2021, 178, 132-134.	2.5	4
40	Mitigation of glyphosate side effects on non-target plants: use of different agrochemicals as protectants in common bean plants. Ambi \tilde{A}^a ncia, 2014, 10, .	0.1	4
41	Lonchocarpus cultratus, a Brazilian savanna tree, endures high soil Pb levels. Environmental Science and Pollution Research, 2021, 28, 50931-50940.	5.3	3
42	Antioxidative metabolism in sugarcane (Poaceae) varieties subjected to water and saline stress. Revista Brasileira De Engenharia Agricola E Ambiental, 2020, 24, 776-782.	1.1	3
43	Wood production and nutritional and antioxidant status of field-grown Eucalyptus under a differential supply of lime and copper plus zinc. Industrial Crops and Products, 2022, 175, 114192.	5.2	3
44	Comparativo de rentabilidade da produção da cana-de-açðcar em sistema de arrendamento e fornecimento em Chavantes/SP. Revista IPecege, 2016, 2, 7-26.	0.2	2
45	Tolerance of tomato to cadmium-induced stress: analyzing cultivars with different fruit colors. Environmental Science and Pollution Research, 2021, 28, 26172-26181.	5.3	1
46	Seed photorespiration: a perspective review. Plant Growth Regulation, 0, , 1 .	3.4	1
47	O Rio e a Escola: uma experiência de extensão universitária e de educação ambiental. QuÃmica Nova Na Escola, 2017, 39, .	0.1	O
48	In vitro development of sugarcane seedlings using ethephon or gibberellin. Comunicata Scientiae, 2018, 8, 389-395.	0.4	0