Pejman Rohani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5851637/publications.pdf

Version: 2024-02-01

114 papers 8,583 citations

66343 42 h-index 80 g-index

126 all docs

126 docs citations

times ranked

126

7840 citing authors

#	Article	IF	CITATIONS
1	Stability and Resilience of Transportation Systems: Is a Traffic Jam About to Occur?. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 10803-10814.	8.0	1
2	Optimal non-pharmaceutical intervention policy for Covid-19 epidemic via neuroevolution algorithm. Evolution, Medicine and Public Health, 2022, 10, 59-70.	2.5	1
3	Transmission models indicate Ebola virus persistence in non-human primate populations is unlikely. Journal of the Royal Society Interface, 2022, 19, 20210638.	3.4	5
4	Dissecting recurrent waves of pertussis across the boroughs of London. PLoS Computational Biology, 2022, 18, e1009898.	3.2	3
5	Immunological heterogeneity informs estimation of the durability of vaccine protection. Journal of the Royal Society Interface, 2022, 19 , .	3.4	2
6	Anomalous influenza seasonality in the United States and the emergence of novel influenza B viruses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	10
7	Five approaches to the suppression of SARS-CoV-2 without intensive social distancing. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203074.	2.6	4
8	Asymptomatic Bordetella pertussis infections in a longitudinal cohort of young African infants and their mothers. ELife, $2021,10,10$	6.0	20
9	Mathematical model of the feedback between global supply chain disruption and COVID-19 dynamics. Scientific Reports, 2021, 11, 15450.	3.3	21
10	Association of Diphtheria-Tetanus–Acellular Pertussis Vaccine Timeliness and Number of Doses With Age-Specific Pertussis Risk in Infants and Young Children. JAMA Network Open, 2021, 4, e2119118.	5.9	11
11	Durability of protection after 5 doses of acellular pertussis vaccine among 5–9Âyear old children in King County, Washington. Vaccine, 2021, 39, 6144-6150.	3.8	3
12	The impact of infection-derived immunity on disease dynamics. Journal of Mathematical Biology, 2021, 83, 61.	1.9	4
13	Untangling the evolution of dengue viruses. Science, 2021, 374, 941-942.	12.6	O
14	The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic. Scientific Reports, 2021, 11, 23775.	3.3	10
15	Overcoming Waning Immunity in Pertussis Vaccines: Workshop of the National Institute of Allergy and Infectious Diseases. Journal of Immunology, 2020, 205, 877-882.	0.8	17
16	Nonlinear dynamic analysis of an epidemiological model for COVID-19 including public behavior and government action. Nonlinear Dynamics, 2020, 101, 1545-1559.	5.2	51
17	Transmission dynamics reveal the impracticality of COVID-19 herd immunity strategies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25897-25903.	7.1	77
18	Transient indicators of tipping points in infectious diseases. Journal of the Royal Society Interface, 2020, 17, 20200094.	3.4	20

#	Article	IF	CITATIONS
19	Dynamical footprints enable detection of disease emergence. PLoS Biology, 2020, 18, e3000697.	5.6	18
20	Detecting critical slowing down in high-dimensional epidemiological systems. PLoS Computational Biology, 2020, 16, e1007679.	3. 2	34
21	Implementation and adherence of routine pertussis vaccination (DTP) in a low-resource urban birth cohort. BMJ Open, 2020, 10, e041198.	1.9	7
22	Age-structure and transient dynamics in epidemiological systems. Journal of the Royal Society Interface, 2019, 16, 20190151.	3. 4	23
23	The statistics of epidemic transitions. PLoS Computational Biology, 2019, 15, e1006917.	3.2	46
24	Quantifying the consequences of measles-induced immune modulation for whooping cough epidemiology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180270.	4.0	8
25	Duration of Immunity and Effectiveness of Diphtheria-Tetanus–Acellular Pertussis Vaccines in Children. JAMA Pediatrics, 2019, 173, 588.	6.2	24
26	Commentary: resolving pertussis resurgence and vaccine immunity using mathematical transmission models. Human Vaccines and Immunotherapeutics, 2019, 15, 683-686.	3.3	6
27	Core pertussis transmission groups in England and Wales: A tale of two eras. Vaccine, 2018, 36, 1160-1166.	3.8	8
28	The impact of past vaccination coverage and immunity on pertussis resurgence. Science Translational Medicine, 2018, 10, .	12.4	76
29	Anticipating epidemic transitions with imperfect data. PLoS Computational Biology, 2018, 14, e1006204.	3.2	23
30	Response to Comment on $\hat{a} \in \infty$ The impact of past vaccination coverage and immunity on pertussis resurgence $\hat{a} \in \mathbb{R}$ Science Translational Medicine, 2018, 10, .	12.4	2
31	Comparative epidemiology of poliovirus transmission. Scientific Reports, 2017, 7, 17362.	3.3	9
32	Forecasting infectious disease emergence subject to seasonal forcing. Theoretical Biology and Medical Modelling, 2017, 14, 17.	2.1	23
33	Anticipating the emergence of infectious diseases. Journal of the Royal Society Interface, 2017, 14, 20170115.	3.4	46
34	The relationship between mucosal immunity, nasopharyngeal carriage, asymptomatic transmission and the resurgence of Bordetella pertussis. F1000Research, 2017, 6, 1568.	1.6	28
35	Maternal pertussis immunisation: clinical gains and epidemiological legacy. Eurosurveillance, 2017, 22,	7.0	8
36	Spatial spread of the West Africa Ebola epidemic. Royal Society Open Science, 2016, 3, 160294.	2.4	86

#	Article	IF	Citations
37	Pertussis immunity and epidemiology: mode and duration of vaccine-induced immunity. Parasitology, 2016, 143, 835-849.	1.5	25
38	Using age-stratified incidence data to examine the transmission consequences of pertussis vaccination. Epidemics, 2016, 16, 1-7.	3.0	2
39	Forecasting Epidemiological Consequences of Maternal Immunization. Clinical Infectious Diseases, 2016, 63, S205-S212.	5.8	17
40	The potential for sexual transmission to compromise control of Ebola virus outbreaks. Biology Letters, 2016, 12, 20151079.	2.3	15
41	The pertussis enigma: reconciling epidemiology, immunology and evolution. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152309.	2.6	104
42	The role of influenza in the epidemiology of pneumonia. Scientific Reports, 2015, 5, 15314.	3.3	38
43	Dynamics of Pertussis Transmission in the United States. American Journal of Epidemiology, 2015, 181, 921-931.	3.4	16
44	Local variation in plant quality influences largeâ€scale population dynamics. Oikos, 2015, 124, 1160-1170.	2.7	25
45	Combating pertussis resurgence: One booster vaccination schedule does not fit all. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E472-7.	7.1	25
46	Crossing the scale from within-host infection dynamics to between-host transmission fitness: a discussion of current assumptions and knowledge. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140302.	4.0	95
47	Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to Ebola. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150347.	2.6	185
48	Unraveling the Transmission Ecology of Polio. PLoS Biology, 2015, 13, e1002172.	5.6	52
49	Adaptive Evolution and Environmental Durability Jointly Structure Phylodynamic Patterns in Avian Influenza Viruses. PLoS Biology, 2014, 12, e1001931.	5.6	36
50	Epidemiological Consequences of Imperfect Vaccines for Immunizing Infections. SIAM Journal on Applied Mathematics, 2014, 74, 1810-1830.	1.8	57
51	Trade-offs between and within scales: environmental persistence and within-host fitness of avian influenza viruses. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133051.	2.6	30
52	Perplexities of pertussis: recent global epidemiological trends and their potential causes. Epidemiology and Infection, 2014, 142, 672-684.	2.1	122
53	Epidemiological evidence for herd immunity induced by acellular pertussis vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E716-7.	7.1	31
54	Using quantitative disease dynamics as a tool for guiding response to avian influenza in poultry in the United States of America. Preventive Veterinary Medicine, 2014, 113, 376-397.	1.9	19

#	Article	IF	CITATIONS
55	Subtype diversity and reassortment potential for coâ€circulating avian influenza viruses at a diversity hot spot. Journal of Animal Ecology, 2014, 83, 566-575.	2.8	8
56	Neutrality, Cross-Immunity and Subtype Dominance in Avian Influenza Viruses. PLoS ONE, 2014, 9, e88817.	2.5	7
57	Can vaccine legacy explain the British pertussis resurgence?. Vaccine, 2013, 31, 5903-5908.	3.8	38
58	A Multi-scale Analysis of Influenza A Virus Fitness Trade-offs due to Temperature-dependent Virus Persistence. PLoS Computational Biology, 2013, 9, e1002989.	3.2	48
59	Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. Journal of the Royal Society Interface, 2013, 10, 20130414.	3.4	254
60	Dissecting a wildlife disease hotspot: the impact of multiple host species, environmental transmission and seasonality in migration, breeding and mortality. Journal of the Royal Society Interface, 2013, 10, 20120804.	3.4	31
61	Identifying the Interaction Between Influenza and Pneumococcal Pneumonia Using Incidence Data. Science Translational Medicine, 2013, 5, 191ra84.	12.4	123
62	Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20837-20842.	7.1	149
63	Deciphering the impacts of vaccination and immunity on pertussis epidemiology in Thailand. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9595-9600.	7.1	48
64	The consequences of climate change at an avian influenza â€~hotspot'. Biology Letters, 2012, 8, 1036-1039.	2.3	14
65	Changing spatial epidemiology of pertussis in continental USA. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4574-4581.	2.6	30
66	Resolving pertussis immunity and vaccine effectiveness using incidence time series. Expert Review of Vaccines, 2012, 11, 1319-1329.	4.4	15
67	The population ecology of infectious diseases: pertussis in Thailand as a case study. Parasitology, 2012, 139, 1888-1898.	1.5	9
68	The decline and resurgence of pertussis in the US. Epidemics, 2011, 3, 183-188.	3.0	88
69	The curse of the Pharaoh revisited: evolutionary bi-stability in environmentally transmitted pathogens. Ecology Letters, 2011, 14, 569-575.	6.4	39
70	An Agent-Based Model to study the epidemiological and evolutionary dynamics of Influenza viruses. BMC Bioinformatics, 2011, 12, 87.	2.6	55
71	Statistical Inference for Multi-Pathogen Systems. PLoS Computational Biology, 2011, 7, e1002135.	3.2	59
72	Chapter Three. Understanding Host- Multipathogen Systems: Modeling the Interaction Between Ecology and Immunology., 2010,, 48-70.		1

#	Article	IF	CITATIONS
73	A general multi-strain model with environmental transmission: Invasion conditions for the disease-free and endemic states. Journal of Theoretical Biology, 2010, 264, 729-736.	1.7	38
74	Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics. Journal of Applied Ecology, 2010, 47, 1329-1339.	4.0	60
75	Poverty trap formed by the ecology of infectious diseases. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1185-1192.	2.6	154
76	Herd immunity acquired indirectly from interactions between the ecology of infectious diseases, demography and economics. Journal of the Royal Society Interface, 2010, 7, 541-547.	3 . 4	14
77	Decreasing stochasticity through enhanced seasonality in measles epidemics. Journal of the Royal Society Interface, 2010, 7, 727-739.	3.4	18
78	Resolving the impact of waiting time distributions on the persistence of measles. Journal of the Royal Society Interface, 2010, 7, 623-640.	3.4	48
79	Impact of vaccination and birth rate on the epidemiology of pertussis: a comparative study in 64 countries. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3239-3245.	2.6	82
80	Environmental transmission scrambles coexistence patterns of avian influenza viruses. Epidemics, 2010, 2, 92-98.	3.0	13
81	Never mind the length, feel the quality: the impact of long-term epidemiological data sets on theory, application and policy. Trends in Ecology and Evolution, 2010, 25, 611-618.	8.7	29
82	Contact Network Structure Explains the Changing Epidemiology of Pertussis. Science, 2010, 330, 982-985.	12.6	186
83	Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10365-10369.	7.1	216
84	Estimating the Duration of Pertussis Immunity Using Epidemiological Signatures. PLoS Pathogens, 2009, 5, e1000647.	4.7	124
85	The Role of Environmental Transmission in Recurrent Avian Influenza Epidemics. PLoS Computational Biology, 2009, 5, e1000346.	3.2	197
86	The Link between Dengue Incidence and El Niño Southern Oscillation. PLoS Medicine, 2009, 6, e1000185.	8.4	14
87	Parasitism and constitutive defence costs to host lifeâ€history traits in a parasitoid–host interaction. Ecological Entomology, 2009, 34, 763-771.	2.2	12
88	Noise, nonlinearity and seasonality: the epidemics of whooping cough revisited. Journal of the Royal Society Interface, 2008, 5, 403-413.	3.4	61
89	Tracking the dynamics of pathogen interactions: Modeling ecological and immune-mediated processes in a two-pathogen single-host system. Journal of Theoretical Biology, 2007, 245, 9-25.	1.7	42
90	Two-species asymmetric competition: effects of age structure on intra- and interspecific interactions. Journal of Animal Ecology, 2007, 76, 83-93.	2.8	50

#	Article	IF	Citations
91	Age-structured effects and disease interference in childhood infections. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1229-1237.	2.6	17
92	Epidemiological impact of vaccination on the dynamics of two childhood diseases in rural Senegal. Microbes and Infection, 2005, 7, 593-599.	1.9	30
93	Appropriate Models for the Management of Infectious Diseases. PLoS Medicine, 2005, 2, e174.	8.4	407
94	The dynamical implications of disease interference: Correlations and coexistence. Theoretical Population Biology, 2005, 68, 205-215.	1.1	9
95	The Dynamical Consequences of Developmental Variability and Demographic Stochasticity for Hostâ∈Parasitoid Interactions. American Naturalist, 2004, 164, 543-558.	2.1	19
96	The colour of noise in short ecological time series data. Mathematical Medicine and Biology, 2004, 21, 63-72.	1.2	11
97	Stage-structured competition and the cyclic dynamics of host-parasitoid populations. Journal of Animal Ecology, 2004, 73, 706-722.	2.8	26
98	Natural enemy specialization and the period of population cycles. Ecology Letters, 2003, 6, 381-384.	6.4	13
99	Ecological interference between fatal diseases. Nature, 2003, 422, 885-888.	27.8	166
100	The Interplay between Determinism and Stochasticity in Childhood Diseases. American Naturalist, 2002, 159, 469-481.	2.1	174
101	Estimating spatial coupling in epidemiological systems: a mechanistic approach. Ecology Letters, 2002, 5, 20-29.	6.4	178
102	Estimating $1/\hat{fl}_{\pm}$ scaling exponents from short time-series. Physica D: Nonlinear Phenomena, 2002, 166, 147-154.	2.8	37
103	Seasonally forced disease dynamics explored as switching between attractors. Physica D: Nonlinear Phenomena, 2001, 148, 317-335.	2.8	217
104	Impact of immunisation on pertussis transmission in England and Wales. Lancet, The, 2000, 355, 285-286.	13.7	107
105	A Simple Model for Complex Dynamical Transitions in Epidemics. Science, 2000, 287, 667-670.	12.6	584
106	Coherence and Conservation. Science, 2000, 290, 1360-1364.	12.6	279
107	Fitnessâ€dependent dispersal in metapopulations and its consequences for persistence and synchrony. Journal of Animal Ecology, 1999, 68, 530-539.	2.8	70
108	Opposite Patterns of Synchrony in Sympatric Disease Metapopulations. Science, 1999, 286, 968-971.	12.6	282

#	ARTICLE	IF	CITATIONS
109	Persistence, chaos and synchrony in ecology and epidemiology. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 7-10.	2.6	211
110	Intrinsically generated coloured noise in laboratory insect populations. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 785-792.	2.6	48
111	Population dynamic interference among childhood diseases. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 2033-2041.	2.6	85
112	Spatial self-organisation in ecology: pretty patterns or robust reality? Trends in Ecology and Evolution, 1997, 12, 70-74.	8.7	117
113	Mathematical Modeling of Infectious Diseases Dynamics. , 0, , 379-404.		45
114	Ecology Of Infectious Diseases: An Example with Two Vaccine-Preventable Infectious Diseases. , 0, , 189-198.		0