Nicole Hobbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5851627/publications.pdf

Version: 2024-02-01

687363 642732 33 528 13 23 citations h-index g-index papers 33 33 33 379 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Automatic Detection and Estimation of Unannounced Meals for Multivariable Artificial Pancreas System. Diabetes Technology and Therapeutics, 2018, 20, 235-246.	4.4	71
2	Multivariable Artificial Pancreas for Various Exercise Types and Intensities. Diabetes Technology and Therapeutics, 2018, 20, 662-671.	4.4	49
3	Incorporating Unannounced Meals and Exercise in Adaptive Learning of Personalized Models for Multivariable Artificial Pancreas Systems. Journal of Diabetes Science and Technology, 2018, 12, 953-966.	2.2	43
4	Simulation software for assessment of nonlinear and adaptive multivariable control algorithms: Glucose–insulin dynamics in Type 1 diabetes. Computers and Chemical Engineering, 2019, 130, 106565.	3.8	43
5	Adaptive personalized multivariable artificial pancreas using plasma insulin estimates. Journal of Process Control, 2019, 80, 26-40.	3.3	40
6	Adaptive and Personalized Plasma Insulin Concentration Estimation for Artificial Pancreas Systems. Journal of Diabetes Science and Technology, 2018, 12, 639-649.	2.2	39
7	Determining Physical Activity Characteristics From Wristband Data for Use in Automated Insulin Delivery Systems. IEEE Sensors Journal, 2020, 20, 12859-12870.	4.7	36
8	Model-fusion-based online glucose concentration predictions in people with type 1 diabetes. Control Engineering Practice, 2018, 71, 129-141.	5. 5	27
9	Adaptive-learning model predictive control for complex physiological systems: Automated insulin delivery in diabetes. Annual Reviews in Control, 2020, 50, 1-12.	7.9	24
10	Discrimination of simultaneous psychological and physical stressors using wristband biosignals. Computer Methods and Programs in Biomedicine, 2021, 199, 105898.	4.7	23
11	Online Glucose Prediction Using Computationally Efficient Sparse Kernel Filtering Algorithms in Type-1 Diabetes. IEEE Transactions on Control Systems Technology, 2020, 28, 3-15.	5.2	22
12	Improving Glucose Prediction Accuracy in Physically Active Adolescents With Type 1 Diabetes. Journal of Diabetes Science and Technology, 2019, 13, 718-727.	2.2	21
13	Incorporating Prior Information in Adaptive Model Predictive Control for Multivariable Artificial Pancreas Systems. Journal of Diabetes Science and Technology, 2022, 16, 19-28.	2.2	16
14	Multi-level supervision and modification of artificial pancreas control system. Computers and Chemical Engineering, 2018, 112, 57-69.	3.8	10
15	Prior informed regularization of recursively updated latent-variables-based models with missing observations. Control Engineering Practice, 2021, 116, 104933.	5.5	10
16	Adaptive Model Predictive Control for Nonlinearity in Biomedical Applications. IFAC-PapersOnLine, 2018, 51, 368-373.	0.9	7
17	Hybrid Online Multi-Sensor Error Detection and Functional Redundancy for Artificial Pancreas Control Systems. IFAC-PapersOnLine, 2018, 51, 138-143.	0.9	7
18	Multiâ€model sensor fault detection and data reconciliation: ⟨scp⟩A⟨/scp⟩ case study with glucose concentration sensors for diabetes. AICHE Journal, 2019, 65, 629-639.	3.6	7

#	Article	IF	Citations
19	Assessing the Effects of Stress Response on Glucose Variations. , 2019, , .		7
20	Fault Detection in Continuous Glucose Monitoring Sensors for Artificial Pancreas Systems. IFAC-PapersOnLine, 2018, 51, 714-719.	0.9	6
21	Controlling the AP Controller: Controller Performance Assessment and Modification. Journal of Diabetes Science and Technology, 2019, 13, 1091-1104.	2.2	6
22	Observational Study of Glycemic Impact of Anticipatory and Early-Race Athletic Competition Stress in Type 1 Diabetes. Frontiers in Clinical Diabetes and Healthcare, 2022, 3, .	0.8	5
23	Automated closed-loop insulin delivery: system components, performance, and limitations., 2020,, 293-326.		4
24	Virtual Patients: An Enabling Technology for Multivariable Control of Biomedical Systems. IFAC-PapersOnLine, 2020, 53, 16233-16238.	0.9	2
25	Automated insulin delivery systems for people with type 1 diabetes. , 2021, , 181-198.		1
26	48-LB: The Effect of Acute Psychosocial Stress in Adults with Type 1 Diabetes. Diabetes, 2020, 69, 48-LB.	0.6	1
27	1007-P: Clinical Evaluation of Multivariable Automated Insulin Delivery. Diabetes, 2020, 69, 1007-P.	0.6	1
28	Multivariable AP with adaptive control. , 2019, , 59-77.		0
29	Adaptive control of artificial pancreas systems for treatment of type 1 diabetes., 2020,, 63-81.		0
30	Performance Monitoring, Assessment and Modification of an Adaptive MPC: Automated Insulin Delivery in Diabetes *., 2020, , .		0
31	Event-Triggered Decision Support and Automatic Control Systems for Type 1 Diabetes., 2021,,.		0
32	690-P: Use of Physiological and Psychological States to Enhance Glucose Concentration Estimation. Diabetes, 2020, 69, 690-P.	0.6	0
33	Leveraging Plasma Insulin Estimates and Wearable Technologies to Develop an Automated Insulin Delivery System in Type 1 Diabetes. , 2020, , 185-198.		0