Vitaliy V Khutoryanskiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5851573/publications.pdf Version: 2024-02-01

		41344	34986
199	11,156	49	98
papers	citations	h-index	g-index
228 all docs	228 docs citations	228 times ranked	13252 citing authors

#	Article	IF	CITATIONS
1	Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. Advanced Science, 2022, 9, e2102451.	11.2	29
2	Oral retention of thermally denatured whey protein: In vivo measurement and structural observations by CD and NMR. Food Chemistry, 2022, 374, 131650.	8.2	3
3	Polymer Architecture Effects on Poly(N,Nâ€Diethyl Acrylamide)â€bâ€Poly(Ethylene Glycol)â€bâ€Poly(N,Nâ€Diet Bioscience, 2022, 22, e2100432.	hyl) Tj ETÇ 4.1	2q1 1 0.7843 7
4	Polymeric iodophors with poly(2-ethyl-2-oxazoline) and poly(N-vinylpyrrolidone): optical, hydrodynamic, thermodynamic, and antimicrobial properties. European Polymer Journal, 2022, 165, 111005.	5.4	7
5	Investigation of the Thermogelation of a Promising Biocompatible ABC Triblock Terpolymer and Its Comparison with Pluronic F127. Macromolecules, 2022, 55, 1783-1799.	4.8	9
6	Polyaphron Formulations Stabilised with Different Water-Soluble Polymers for Ocular Drug Delivery. Pharmaceutics, 2022, 14, 926.	4.5	9
7	Aldehyde-functional thermoresponsive diblock copolymer worm gels exhibit strong mucoadhesion. Chemical Science, 2022, 13, 6888-6898.	7.4	12
8	Development and optimization of solid lipid nanoparticles coated with chitosan and poly(2-ethyl-2-oxazoline) for ocular drug delivery of ciprofloxacin. Journal of Drug Delivery Science and Technology, 2022, 74, 103527.	3.0	17
9	Mucus-penetrating nanoparticles based on chitosan grafted with various non-ionic polymers: Synthesis, structural characterisation and diffusion studies. Journal of Colloid and Interface Science, 2022, 626, 251-264.	9.4	24
10	Happy 70th birthday, Professor Sarkyt E. Kudaibergenov. Polymers for Advanced Technologies, 2021, 32, 2636-2638.	3.2	0
11	Thiolated and PEGylated silica nanoparticle delivery to hair follicles. International Journal of Pharmaceutics, 2021, 593, 120130.	5.2	15
12	Interpolymer Complexes Based on Carbopol [®] and Poly(2-ethyl-2-oxazoline) as Carriers for Buccal Delivery of Metformin. Drug Development and Registration, 2021, 10, 48-55.	0.6	4
13	Electrosprayed mucoadhesive alginate-chitosan microcapsules for gastrointestinal delivery of probiotics. International Journal of Pharmaceutics, 2021, 597, 120342.	5.2	26
14	A Novel Polymer Insect Repellent Conjugate for Extended Release and Decreased Skin Permeation of Para-Menthane-3,8-Diol. Pharmaceutics, 2021, 13, 403.	4.5	3
15	Poly(2â€ethylâ€2â€oxazoline) grafted gellan gum for potential application in transmucosal drug delivery. Polymers for Advanced Technologies, 2021, 32, 2770-2780.	3.2	10
16	Oral care product formulations, properties and challenges. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111567.	5.0	22
17	Mutual Effects of Hydrogen Bonding and Polymer Hydrophobicity on Ibuprofen Crystal Inhibition in Solid Dispersions with Poly(N-vinyl pyrrolidone) and Poly(2-oxazolines). Pharmaceutics, 2021, 13, 659.	4.5	7
18	Understanding the temperature induced aggregation of silica nanoparticles decorated with temperature-responsive polymers: Can a small step in the chemical structure make a giant leap for a phase transition?. Journal of Colloid and Interface Science, 2021, 590, 249-259.	9.4	5

#	Article	IF	CITATIONS
19	Mucoadhesive and mucus-penetrating interpolyelectrolyte complexes for nose-to-brain drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102432.	3.3	19
20	Interaction of mucin with viologen and acetate derivatives of calix[4]resorcinols. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112089.	5.0	1
21	Role of mucoadhesive polymers in retention of toothpaste in the oral cavity. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112104.	5.0	2
22	Synthesis and Evaluation of Methacrylated Poly(2-ethyl-2-oxazoline) as a Mucoadhesive Polymer for Nasal Drug Delivery. ACS Applied Polymer Materials, 2021, 3, 5882-5892.	4.4	10
23	Intranasal Administration as a Route to Deliver Drugs to the Brain (Review). Drug Development and Registration, 2021, 10, 117-127.	0.6	6
24	Hybrid Nanoparticles for Haloperidol Encapsulation: Quid Est Optimum?. Polymers, 2021, 13, 4189.	4.5	3
25	Polymer structure and property effects on solid dispersions with haloperidol: Poly(N-vinyl) Tj ETQq1 1 0.784314	rgBT/Over 5.2	lock 10 Tf $\frac{50}{18}$
26	Interpolymer Complexes of Eudragit® Copolymers as Novel Carriers for Colon-Specific Drug Delivery. Polymers, 2020, 12, 1459.	4.5	18
27	Silica Nanoparticles in Transmucosal Drug Delivery. Pharmaceutics, 2020, 12, 751.	4.5	43
28	Planarian toxicity fluorescent assay: A rapid and cheap pre-screening tool for potential skin irritants. Toxicology in Vitro, 2020, 69, 105004.	2.4	6
29	Synthesis of hydrolytically and oxidationâ€responsive networks using thiolâ€ene "click―chemistry with pentaerythritol tetrakis(3â€mercaptopropionate) and tri/tetraâ€acrylates. Polymers for Advanced Technologies, 2020, 32, 2682.	3.2	5
30	Development of chitosan-coated agar-gelatin particles for probiotic delivery and targeted release in the gastrointestinal tract. Applied Microbiology and Biotechnology, 2020, 104, 5749-5757.	3.6	34
31	Rainfastness of agrochemical formulations based on N-vinyl pyrrolidone polymers and their interpolymer complexes with poly(acrylic acid). European Polymer Journal, 2020, 134, 109852.	5.4	3
32	PEGylated Systems in Pharmaceutics. Polymer Science - Series C, 2020, 62, 62-74.	1.7	15
33	Conjugation of haloperidol to PEG allows peripheral localisation of haloperidol and eliminates CNS extrapyramidal effects. Journal of Controlled Release, 2020, 322, 227-235.	9.9	8
34	Gellan gum and its methacrylated derivatives as in situ gelling mucoadhesive formulations of pilocarpine: In vitro and in vivo studies. International Journal of Pharmaceutics, 2020, 577, 119093.	5.2	50
35	Chitosan/Poly(2-ethyl-2-oxazoline) Films with Ciprofloxacin for Application in Vaginal Drug Delivery. Materials, 2020, 13, 1709.	2.9	25
36	Chitosan based hydrogels and their use in medicine. Chemical Bulletin of Kazakh National University, 2020, , 16-28.	0.1	1

#	Article	IF	CITATIONS
37	ЕStudy of Haloperidol Release from Polycomplex Nanoparticles Based on Eudragit [®] Copolymers. Drug Development and Registration, 2020, 9, 45-50.	0.6	1
38	Preparation and publication of chemistry papers in international peer-reviewed journals. Chemical Bulletin of Kazakh National University, 2020, , 40-49.	0.1	0
39	Maleimide-functionalised PLGA-PEG nanoparticles as mucoadhesive carriers for intravesical drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 143, 24-34.	4.3	48
40	Penetration Enhancers in Ocular Drug Delivery. Pharmaceutics, 2019, 11, 321.	4.5	135
41	Synthesis and Evaluation of Boronated Chitosan as a Mucoadhesive Polymer for Intravesical Drug Delivery. Journal of Pharmaceutical Sciences, 2019, 108, 3046-3053.	3.3	36
42	Progress and Current Trends in the Synthesis of Novel Polymers with Enhanced Mucoadhesive Properties. Macromolecular Bioscience, 2019, 19, e1900194.	4.1	62
43	Chitosan/β-glycerophosphate in situ gelling mucoadhesive systems for intravesical delivery of mitomycin-C. International Journal of Pharmaceutics: X, 2019, 1, 100007.	1.6	23
44	Acrylated Eudragit® E PO as a novel polymeric excipient with enhanced mucoadhesive properties for application in nasal drug delivery. International Journal of Pharmaceutics, 2019, 562, 241-248.	5.2	40
45	Chitosan/poly(2-ethyl-2-oxazoline) films for ocular drug delivery: Formulation, miscibility, in vitro and in vivo studies. European Polymer Journal, 2019, 116, 311-320.	5.4	41
46	Mucus penetrating properties of soft, distensible lipid nanocapsules. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 76-84.	4.3	8
47	Interpolymer complexes of carbopol® 971 and poly(2-ethyl-2-oxazoline): Physicochemical studies of complexation and formulations for oral drug delivery. International Journal of Pharmaceutics, 2019, 558, 53-62.	5.2	19
48	Structure and characterisation of hydroxyethylcellulose–silica nanoparticles. RSC Advances, 2018, 8, 6471-6478.	3.6	19
49	Development of surfactant-coated alginate capsules containing Lactobacillus plantarum. Food Hydrocolloids, 2018, 82, 490-499.	10.7	24
50	Polysaccharide food matrices for controlling the release, retention and perception of flavours. Food Hydrocolloids, 2018, 79, 253-261.	10.7	29
51	Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Advanced Drug Delivery Reviews, 2018, 124, 140-149.	13.7	137
52	Mucoadhesive maleimide-functionalised liposomes for drug delivery to urinary bladder. European Journal of Pharmaceutical Sciences, 2018, 111, 83-90.	4.0	61
53	Mucoadhesive polysaccharides modulate sodium retention, release and taste perception. Food Chemistry, 2018, 240, 482-489.	8.2	44
54	Polyelectrolyte nanocontainers: Controlled binding and release of indomethacin. Journal of Molecular Liquids, 2018, 272, 982-989.	4.9	14

VITALIY V KHUTORYANSKIY

#	Article	IF	CITATIONS
55	Modern Methods for Studying Polymer Complexes in Aqueous and Organic Solutions. Polymer Science - Series A, 2018, 60, 553-576.	1.0	16
56	Formulation of Carbopol®/Poly(2-ethyl-2-oxazoline)s Mucoadhesive Tablets for Buccal Delivery of Hydrocortisone. Polymers, 2018, 10, 175.	4.5	27
57	Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems. Polymers, 2018, 10, 267.	4.5	481
58	Synthesis of thiolated, PEGylated and POZylated silica nanoparticles and evaluation of their retention on rat intestinal mucosa in vitro. European Journal of Pharmaceutical Sciences, 2018, 122, 230-238.	4.0	23
59	Methacrylated chitosan as a polymer with enhanced mucoadhesive properties for transmucosal drug delivery. International Journal of Pharmaceutics, 2018, 550, 123-129.	5.2	93
60	Supramolecular Hybrid Structures and Gels from Host–Guest Interactions between α-Cyclodextrin and PEGylated Organosilica Nanoparticles. Langmuir, 2018, 34, 10591-10602.	3.5	20
61	Controlling the Size of Thiolated Organosilica Nanoparticles. Langmuir, 2018, 34, 8347-8354.	3.5	17
62	Whey protein mouth drying influenced by thermal denaturation. Food Quality and Preference, 2017, 56, 233-240.	4.6	35
63	Hydrogels based on copolymers of 2â€hydroxyethylmethacrylate and 2â€hydroxyethylacrylate as a delivery system for proteins: Interactions with lysozyme. Journal of Applied Polymer Science, 2017, 134,	2.6	9
64	Intensifying chitin hydrolysis by adjunct treatments – an overview. Journal of Chemical Technology and Biotechnology, 2017, 92, 2787-2798.	3.2	26
65	Indomethacin-containing interpolyelectrolyte complexes based on Eudragit ® E PO/S 100 copolymers as a novel drug delivery system. International Journal of Pharmaceutics, 2017, 524, 121-133.	5.2	30
66	Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery. Colloids and Surfaces B: Biointerfaces, 2017, 155, 538-543.	5.0	40
67	A mucosa-mimetic material for the mucoadhesion testing of thermogelling semi-solids. International Journal of Pharmaceutics, 2017, 528, 586-594.	5.2	30
68	Delivery of Riboflavin-5′-Monophosphate Into the Cornea: Can Liposomes Provide Any Enhancement Effects?. Journal of Pharmaceutical Sciences, 2017, 106, 3041-3049.	3.3	14
69	Mucoadhesion: A food perspective. Food Hydrocolloids, 2017, 72, 281-296.	10.7	87
70	Synthesis and solution properties of a temperature-responsive PNIPAM–b-PDMS–b-PNIPAM triblock copolymer. Colloid and Polymer Science, 2017, 295, 1351-1358.	2.1	16
71	Crown Ethers: Novel Permeability Enhancers for Ocular Drug Delivery?. Molecular Pharmaceutics, 2017, 14, 3528-3538.	4.6	47
72	Advances in intravesical drug delivery systems to treat bladder cancer. International Journal of Pharmaceutics, 2017, 532, 105-117.	5.2	58

#	Article	IF	CITATIONS
73	Encapsulation of <i>Lactobacillus casei</i> into Calcium Pectinateâ€Chitosan Beads for Enteric Delivery. Journal of Food Science, 2017, 82, 2954-2959.	3.1	49
74	Enhancement and inhibition effects on the corneal permeability of timolol maleate: Polymers, cyclodextrins and chelating agents. International Journal of Pharmaceutics, 2017, 529, 168-177.	5.2	30
75	Chloride. Eurasian Chemico-Technological Journal, 2017, 4, 195.	0.6	2
76	Interaction of Chitosan with Hydrogel of Poly(Acrylic Acid) and Preparation of Encapsulated Drugs. Eurasian Chemico-Technological Journal, 2017, 3, 191.	0.6	6
77	Synthesis and Solution Properties of Hydrophobically Modified Polysaccharides. Eurasian Chemico-Technological Journal, 2017, 7, 99.	0.6	5
78	Enzyme assisted extraction of chitin from shrimp shells (<i>Litopenaeus vannamei)</i> . Journal of Chemical Technology and Biotechnology, 2016, 91, 1250-1256.	3.2	61
79	Rainfastness of Poly(vinyl alcohol) Deposits on <i>Vicia faba</i> Leaf Surfaces: From Laboratory-Scale Washing to Simulated Rain. ACS Applied Materials & Interfaces, 2016, 8, 14220-14230.	8.0	26
80	Internal Nanoparticle Structure of Temperature-Responsive Self-Assembled PNIPAM- <i>b</i> -PEG- <i>b</i> -PNIPAM Triblock Copolymers in Aqueous Solutions: NMR, SANS, and Light Scattering Studies. Langmuir, 2016, 32, 5314-5323.	3.5	48
81	Maleimide-bearing nanogels as novel mucoadhesive materials for drug delivery. Journal of Materials Chemistry B, 2016, 4, 6581-6587.	5.8	59
82	Adhesion of thiolated silica nanoparticles to urinary bladder mucosa: Effects of PEGylation, thiol content and particle size. International Journal of Pharmaceutics, 2016, 512, 32-38.	5.2	64
83	Side chain variations radically alter the diffusion of poly(2-alkyl-2-oxazoline) functionalised nanoparticles through a mucosal barrier. Biomaterials Science, 2016, 4, 1318-1327.	5.4	58
84	Development of an immobilization system for in situ micronutrients release. Food Research International, 2016, 90, 121-132.	6.2	8
85	Chitosan as a rainfastness adjuvant for agrochemicals. RSC Advances, 2016, 6, 102206-102213.	3.6	17
86	Poly(vinyl alcohol)–Gantrez® AN cryogels for wound care applications. RSC Advances, 2016, 6, 105487-105494.	3.6	23
87	Antimicrobial hydrogels based on autoclaved poly(vinyl alcohol) and poly(methyl vinyl) Tj ETQq1 1 0.784314 rgBT	/Qyerlock	10 Tf 50 18
88	In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. International Journal of Pharmaceutics, 2016, 502, 70-79.	5.2	213
89	Evaluating and optimizing oral formulations of live bacterial vaccines using a gastro-small intestine model. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 102, 115-122.	4.3	6
90	Probing the Mucoadhesive Interactions Between Porcine Gastric Mucin and Some Waterâ€Soluble Polymers. Macromolecular Bioscience, 2015, 15, 1546-1553.	4.1	54

#	Article	IF	CITATIONS
91	Novel glycopolymer hydrogels as mucosa-mimetic materials to reduce animal testing. Chemical Communications, 2015, 51, 14447-14450.	4.1	49
92	Enteric coated spheres produced by extrusion/spheronization provide effective gastric protection and efficient release of live therapeutic bacteria. International Journal of Pharmaceutics, 2015, 493, 483-494.	5.2	34
93	POZylation: a new approach to enhance nanoparticle diffusion through mucosal barriers. Nanoscale, 2015, 7, 13671-13679.	5.6	64
94	Redox- and glucose-responsive hydrogels from poly(vinyl alcohol) and 4-mercaptophenylboronic acid. European Polymer Journal, 2015, 69, 132-139.	5.4	16
95	Evaluation of water properties in HEA–HEMA hydrogels swollen in aqueous-PEG solutions using thermoanalytical techniques. Journal of Thermal Analysis and Calorimetry, 2015, 121, 335-345.	3.6	12
96	Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions. Food Research International, 2015, 74, 208-216.	6.2	80
97	Longer and safer gastric residence. Nature Materials, 2015, 14, 963-964.	27.5	39
98	Mucoadhesion and mucosa-mimetic materials—A mini-review. International Journal of Pharmaceutics, 2015, 495, 991-998.	5.2	67
99	Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 2015, 65, 252-267.	5.4	1,905
100	Inserts. , 2014, , i-viii.		0
101	Advances in ophthalmic drug delivery. Therapeutic Delivery, 2014, 5, 1297-1315.	2.2	141
102	Microencapsulation of a synbiotic into PLGA/alginate multiparticulate gels. International Journal of Pharmaceutics, 2014, 466, 400-408.	5.2	50
103	Hydrogenâ€Bonded Complexes and Blends of Poly(acrylic acid) and Methylcellulose: Nanoparticles and Mucoadhesive Films for Ocular Delivery of Riboflavin. Macromolecular Bioscience, 2014, 14, 225-234.	4.1	47
104	On the Role of Specific Interactions in the Diffusion of Nanoparticles in Aqueous Polymer Solutions. Langmuir, 2014, 30, 308-317.	3.5	84
105	Thermodynamic and kinetic properties of interpolymer complexes assessed by isothermal titration calorimetry and surface plasmon resonance. Soft Matter, 2014, 10, 8254-8260.	2.7	31
106	On the Barrier Properties of the Cornea: A Microscopy Study of the Penetration of Fluorescently Labeled Nanoparticles, Polymers, and Sodium Fluorescein. Molecular Pharmaceutics, 2014, 11, 3556-3564.	4.6	102
107	A Laminated Polymer Film Formulation for Enteric Delivery of Live Vaccine and Probiotic Bacteria. Journal of Pharmaceutical Sciences, 2014, 103, 2022-2032.	3.3	34
108	Enhancement in corneal permeability of riboflavin using calcium sequestering compounds. International Journal of Pharmaceutics, 2014, 472, 56-64.	5.2	55

#	Article	IF	CITATIONS
109	Influence of encapsulation and coating materials on the survival of Lactobacillus plantarum and Bifidobacterium longum in fruit juices. Food Research International, 2013, 53, 304-311.	6.2	82
110	Synthesis of thiolated and acrylated nanoparticles using thiol-ene click chemistry: towards novel mucoadhesive materials for drug delivery. RSC Advances, 2013, 3, 12275.	3.6	48
111	Investigation of milk proteins binding to the oral mucosa. Food and Function, 2013, 4, 1668.	4.6	48
112	Layer-by-layer coating of alginate matrices with chitosan–alginate for the improved survival and targeted delivery of probiotic bacteria after oral administration. Journal of Materials Chemistry B, 2013, 1, 52-60.	5.8	96
113	Hollow capsules formed in a single stage via interfacial hydrogen-bonded complexation of methylcellulose with poly(acrylic acid) and tannic acid. European Polymer Journal, 2013, 49, 4249-4256.	5.4	24
114	Cyclodextrin-Mediated Enhancement of Riboflavin Solubility and Corneal Permeability. Molecular Pharmaceutics, 2013, 10, 756-762.	4.6	120
115	A Comparison of Thiolated and Disulfide-Crosslinked Polyethylenimine for Nonviral Gene Delivery. Macromolecular Bioscience, 2013, 13, 1163-1173.	4.1	18
116	CLSM Method for the Dynamic Observation of pH Change within Polymer Matrices for Oral Delivery. Biomacromolecules, 2013, 14, 387-393.	5.4	19
117	Chitosan-based mucoadhesive tablets for oral delivery of ibuprofen. International Journal of Pharmaceutics, 2012, 436, 602-610.	5.2	97
118	Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel. Regenerative Medicine, 2012, 7, 295-307.	1.7	58
119	Optimizing layer-by-layer deposition of interpolymer complexes on solid substrates using Biacore. Soft Matter, 2012, 8, 6782.	2.7	7
120	Hydrogen-Bonding-Driven Self-Assembly of PEGylated Organosilica Nanoparticles with Poly(acrylic) Tj ETQq0 0 0 0 299-306.	rgBT /Over 3.5	rlock 10 Tf 50 33
121	Chitosan coated alginate beads for the survival of microencapsulated Lactobacillus plantarum in pomegranate juice. Carbohydrate Polymers, 2012, 90, 1281-1287.	10.2	147
122	Amphoteric nano-, micro-, and macrogels, membranes, and thin films. Soft Matter, 2012, 8, 9302.	2.7	77
123	A flow system for the on-line quantitative measurement of the retention of dosage forms on biological surfaces using spectroscopy and image analysis. International Journal of Pharmaceutics, 2012, 428, 96-102.	5.2	18
124	Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, 2012, 162, 56-67.	9.9	538
125	Microwaveâ€Assisted Hydrogel Synthesis: A New Method for Crosslinking Polymers in Aqueous Solutions. Macromolecular Rapid Communications, 2012, 33, 332-336.	3.9	70
126	Developing synthetic mucosa-mimetic hydrogels to replace animal experimentation in characterisation of mucoadhesive drug delivery systems. Soft Matter, 2011, 7, 9620.	2.7	39

#	Article	IF	CITATIONS
127	Thiolated Mucoadhesive and PEGylated Nonmucoadhesive Organosilica Nanoparticles from 3-Mercaptopropyltrimethoxysilane. Langmuir, 2011, 27, 9551-9556.	3.5	89
128	Production and Evaluation of Dry Alginate-Chitosan Microcapsules as an Enteric Delivery Vehicle for Probiotic Bacteria. Biomacromolecules, 2011, 12, 2834-2840.	5.4	235
129	Advances in Mucoadhesion and Mucoadhesive Polymers. Macromolecular Bioscience, 2011, 11, 748-764.	4.1	463
130	Photochemical crossâ€linking of plastically compressed collagen gel produces an optimal scaffold for corneal tissue engineering. Journal of Biomedical Materials Research - Part A, 2011, 99A, 1-8.	4.0	52
131	Micelles of PAAm-b-PEO-b-PAAm Triblock Copolymers and Their Binding with Prednisolon. Molecular Crystals and Liquid Crystals, 2011, 536, 148/[380]-159/[391].	0.9	9
132	Block Copolymers of Methoxypoly(Ethylene Oxide) and Poly(Ϊμ-Caprolactone): Synthesis, Structure, Micellization, and Interaction with Prednisolon. Molecular Crystals and Liquid Crystals, 2011, 536, 215/[447]-223/[455].	0.9	1
133	Exploring the Factors Affecting the Solubility of Chitosan in Water. Macromolecular Chemistry and Physics, 2010, 211, 426-433.	2.2	176
134	Temperature-Responsive Properties and Drug Solubilization Capacity of Amphiphilic Copolymers Based on N-Vinylpyrrolidone and Vinyl Propyl Ether. Langmuir, 2010, 26, 7590-7597.	3.5	27
135	Multilayered hydrogel coatings covalently-linked to glass surfaces showing a potential to mimic mucosal tissues. Soft Matter, 2010, 6, 551-557.	2.7	37
136	Effect of acyl chain length on transfection efficiency and toxicity of polyethylenimine. International Journal of Pharmaceutics, 2009, 378, 201-210.	5.2	81
137	Hydrogen-Bonded Interpolymer Complexes. , 2009, , .		33
138	Layer-by-Layer Electrostatic Entrapment of Protein Molecules on Superparamagnetic Nanoparticle: A New Strategy to Enhance Adsorption Capacity and Maintain Biological Activity. Journal of Physical Chemistry C, 2009, 113, 15260-15265.	3.1	26
139	pH- AND IONIC STRENGTH EFFECTS ON INTERPOLYMER COMPLEXATION VIA HYDROGEN-BONDING. , 2009, , $1-21$.		5
140	PHARMACEUTICAL APPLICATIONS OF INTERPOLYMER COMPLEXES. , 2009, , 235-258.		3
141	Mucoadhesive and Elastic Films Based on Blends of Chitosan and Hydroxyethylcellulose. Macromolecular Bioscience, 2008, 8, 184-192.	4.1	59
142	Solvent Effects on the Formation of Nanoparticles and Multilayered Coatings Based on Hydrogen-Bonded Interpolymer Complexes of Poly(acrylic acid) with Homo- and Copolymers of <i>N</i> -Vinyl Pyrrolidone. Langmuir, 2008, 24, 13742-13747.	3.5	30
143	Why is Chitosan Mucoadhesive?. Biomacromolecules, 2008, 9, 1837-1842.	5.4	591
144	Designing Temperature-Responsive Biocompatible Copolymers and Hydrogels Based on 2-Hydroxyethyl(meth)acrylates. Biomacromolecules, 2008, 9, 3353-3361.	5.4	102

#	Article	IF	CITATIONS
145	Oxidation-responsiveness of nanomaterials for targeting inflammatory reactions. Pure and Applied Chemistry, 2008, 80, 1703-1718.	1.9	52
146	pH-Mediated Interactions between Poly(acrylic acid) and Methylcellulose in the Formation of Ultrathin Multilayered Hydrogels and Spherical Nanoparticles. Macromolecules, 2007, 40, 7707-7713.	4.8	34
147	Temperature-Responsive Water-Soluble Copolymers Based on 2-Hydroxyethyl Acrylate and Butyl Acrylate. Macromolecular Chemistry and Physics, 2007, 208, 979-987.	2.2	50
148	Hydrogen-bonded interpolymer complexes as materials for pharmaceutical applications. International Journal of Pharmaceutics, 2007, 334, 15-26.	5.2	152
149	Mucoadhesive interactions of amphiphilic cationic copolymers based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride. International Journal of Pharmaceutics, 2007, 339, 25-32.	5.2	75
150	Design of Mucoadhesive Polymeric Films Based on Blends of Poly(acrylic acid) and (Hydroxypropyl)cellulose. Biomacromolecules, 2006, 7, 1637-1643.	5.4	47
151	Carbohydrate-Based Micelle Clusters Which Enhance Hydrophobic Drug Bioavailability by Up to 1 Order of Magnitude. Biomacromolecules, 2006, 7, 3452-3459.	5.4	115
152	Novel temperature-responsive water-soluble copolymers based on 2-hydroxyethylacrylate and vinyl butyl ether and their interactions with poly(carboxylic acids). Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 195-204.	2.1	27
153	Synthesis of cationic water-soluble copolymers and hydrogels based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride and 2-hydroxyethylacrylate and their complex formation with poly(acrylic acid). Journal of Polymer Science, Part B: Polymer Physics, 2006, 44. 845-853.	2.1	8
154	Interpolymer complexes of hydroxypropylmethylcellulose with polycarboxylic acids in aqueous solutions. Polymer International, 2006, 55, 668-674.	3.1	10
155	Miscibility studies of the blends of chitosan with some cellulose ethers. Carbohydrate Polymers, 2006, 63, 238-244.	10.2	106
156	Miscibility studies in poly(methyl vinyl ether)/hydroxypropylcellulose binary system in aqueous solutions and solid state. Carbohydrate Polymers, 2005, 62, 80-86.	10.2	16
157	pH Effects on the Complexation, Miscibility and Radiation-Induced Crosslinking in Poly(acrylic) Tj ETQq1 1 0.7843	14 rgBT /0 4.1	Overlock 10
158	Characterisation of Blends Based on Hydroxyethylcellulose and Maleic Acid-alt-Methyl Vinyl Ether. Macromolecular Chemistry and Physics, 2005, 206, 1497-1510.	2.2	39
159	pH Effects in the Complex Formation and Blending of Poly(acrylic acid) with Poly(ethylene oxide). Langmuir, 2004, 20, 3785-3790.	3.5	134
160	Interpolymer complexes of poly(acrylic acid) with poly(2-hydroxyethyl acrylate) in aqueous solutions. Colloid and Polymer Science, 2004, 283, 174-181.	2.1	23
161	Interpolymer complexes of poly(acrylic acid) nanogels with some non-ionic polymers in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 236, 141-146.	4.7	23
162	Radiation synthesis of polyampholyte hydrogels based on vinyl ether of monoethanolamine and sodium acrylate and their interactions with linear polyelectrolytes. Radiation Physics and Chemistry, 2004, 71, 1031-1037.	2.8	7

#	Article	IF	CITATIONS
163	Hydrophilic films based on poly(acrylic acid)–poly(vinyl methyl ether) blends cross-linked by gamma-radiation. Radiation Physics and Chemistry, 2004, 69, 205-209.	2.8	6
164	Temperature-responsive linear polyelectrolytes and hydrogels based on [2-(methacryloyloxy)ethyl] trimethylammonium chloride andN-isopropylacrylamide and their complex formation with potassium hexacyanoferrates (II, III). Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 515-522.	2.1	13
165	Polyelectrolyte complexes of linear copolymers and hydrogels based on 2-[(methacryloyloxy)ethyl]trimethylammonium chloride and N -isopropylacrylamide. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1506-1513.	2.1	7
166	Stabilization of water/n-hexane emulsions by amphiphilic copolymers based on vinyl ethers and their polycomplexes with poly(acrylic acid). Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2625-2632.	2.1	7
167	Morphological and thermal characterization of interpolymer complexes and blends based on poly(acrylic acid) and hydroxypropylcellulose. Polymer International, 2004, 53, 307-311.	3.1	30
168	pH and salt effects on interpolymer complexation via hydrogen bonding in aqueous solutions. Polymer International, 2004, 53, 1382-1387.	3.1	86
169	Effect of temperature on aggregation/dissociation behavior of interpolymer complexes stabilized by hydrogen bonds. Journal of Applied Polymer Science, 2004, 93, 1946-1950.	2.6	34
170	Interpolymer Complexes of Water-Soluble Nonionic Polysaccharides with Polycarboxylic Acids and Their Applications. ChemInform, 2004, 35, no.	0.0	1
171	Polycomplexes of poly(acrylic acid) with streptomycin sulfate and their antibacterial activity. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 245-249.	4.3	27
172	pH effects in the formation of interpolymer complexes between poly(N-vinylpyrrolidone) and poly(acrylic acid) in aqueous solutions. European Physical Journal E, 2003, 10, 65-68.	1.6	39
173	Hydrophilic Films Based on Blends of Poly(acrylic acid) and Poly(2-hydroxyethyl vinyl ether): Thermal, Mechanical, and Morphological Characterization. Macromolecular Bioscience, 2003, 3, 117-122.	4.1	11
174	Interpolymer Complexes of Water-Soluble Nonionic Polysaccharides with Polycarboxylic Acids and Their Applications. Macromolecular Bioscience, 2003, 3, 283-295.	4.1	65
175	Soluble and crosslinked hydrophilic films based on compositions of poly(acrylic acid) and poly(2-hydroxyethyl vinyl ether) for controlled drug release. Journal of Applied Polymer Science, 2003, 90, 137-142.	2.6	5
176	Polyelectrolyte complexes of soluble poly-2-[(methacryloyloxy)ethyl]trimethylammonium chloride and its hydrogels with poly(acrylic acid). European Polymer Journal, 2003, 39, 761-766.	5.4	21
177	pH-effects in the complex formation of polymers I. Interaction of poly(acrylic acid) with poly(acrylamide). European Polymer Journal, 2003, 39, 1687-1691.	5.4	42
178	Radiation grafting from binary monomer mixtures. I. Vinyl ether of monoethanolamine and vinyl ether of ethyleneglycol. Radiation Physics and Chemistry, 2003, 67, 717-722.	2.8	6
179	Radiation synthesis of hydrogels based on copolymers of vinyl ethers of monoethanolamine and ethyleneglycol and their interaction with poly(acrylic acid). Radiation Physics and Chemistry, 2003, 67, 745-749.	2.8	9
180	Radiation grafting from binary monomer mixtures. II. Vinyl ether of monoethanolamine and N-vinylpyrrolidone. Radiation Physics and Chemistry, 2003, 68, 793-798.	2.8	12

#	Article	IF	CITATIONS
181	Phase behaviour of methylcellulose-poly(acrylic acid) blends and preparation of related hydrophilic films. Polymer International, 2003, 52, 62-67.	3.1	33
182	Polyelectrolyte Complexes of Homo- and Copolymers of Vinyl Ether of Monoethanolamine with Poly(Acrylic Acid) in Aqueous Solutions. Journal of Macromolecular Science - Physics, 2003, 42, 283-292.	1.0	2
183	Radiation grafting of vinyl ether of monoethanolamine on polypropylene films for application in waste water treatmentElectronic supplementary information (ESI) available: figures showing the dependence of the extent of grafting and water uptake on hexane content in the feed mixture at different absorbed doses. See http://www.rsc.org/suppdata/jm/b2/b202689a/. Journal of Materials	6.7	10
184	Polymeric complexes of lidocaine hydrochloride with poly(acrylic acid) and poly(2-hydroxyethyl vinyl) Tj ETQq0 0	0 rgBT /Ov 3.5	verlock 10 Tf
185	Collapse of Poly(methacrylic acid) Hydrogels in Response to Simultaneous Stimulation by an Electric Field and Complex Formation. Macromolecular Rapid Communications, 2002, 23, 965-967.	3.9	5
186	Interpolymer complexes of copolymers of vinyl ether of diethylene glycol with poly(acrylic acid). Colloid and Polymer Science, 2002, 280, 282-289.	2.1	27
187	Radiation synthesis of novel cationic flocculants based on copolymers of vinyl ethers of monoethanolamine and ethyleneglycol. Radiation Physics and Chemistry, 2002, 64, 9-12.	2.8	7
188	Radiation synthesis of temperature-responsive hydrogels by copolymerization of [2-(methacryloyloxy)ethyl]trimethylammonium chloride with N-isopropylacrylamide. Radiation Physics and Chemistry, 2002, 65, 67-70.	2.8	13
189	Radiation grafting of vinyl ether of monoethanolamine on polyethylene films. Radiation Physics and Chemistry, 2002, 65, 249-254.	2.8	10
190	Complex formation of polyvinyl ether of diethylene glycol with polyacrylic acid II. Effect of molecular weight of polyacrylic acid and solvent nature. European Polymer Journal, 2002, 38, 313-316.	5.4	13
191	Radiation Synthesis of Linear and Crosslinked Poly[2-(methacryloyloxy)ethyl]trimethylammonium Chloride and Complex Formation with Potassium Hexacyanoferrates (II, III) in Aqueous Solutions. Macromolecular Chemistry and Physics, 2001, 202, 1089-1093.	2.2	9
192	Complex formation between poly(vinyl ether of diethyleneglycol) and polyacrylic acid. European Polymer Journal, 2001, 37, 1233-1237.	5.4	19
193	Design of composite films and ultrathin membranes of interpolymer complexes. Polymers for Advanced Technologies, 2000, 11, 15-19.	3.2	4
194	Effect of copolymer composition on interpolymer complex formation of (co)poly(vinyl ether)s with poly(acrylic acid) in aqueous and organic solutions. Macromolecular Rapid Communications, 2000, 21, 381-384.	3.9	28
195	Complex formation of methylcellulose with poly(acrylic acid). Polymer International, 2000, 49, 867-870.	3.1	19
196	Interpolymer complexes of poly(vinyl ether) of ethylene glycol with poly(carboxylic acids) in aqueous, alcohol and mixed solutions. Polymer, 2000, 41, 7647-7651.	3.8	27
197	Interactions of linear and cross-linked polyacrylic acid with polyvinyl ether of ethyleneglycol in some aliphatic alcohols. Polymer Bulletin, 2000, 44, 563-568.	3.3	10
198	Complex formation between poly(vinyl ether) of ethylene glycol and poly(acrylic acid) in aqueous and organic solutions. Macromolecular Chemistry and Physics, 1999, 200, 2136-2138.	2.2	22

#	Article	IF	CITATIONS
199	Đ'Đ»ĐͺÑĐ½Đ,е ÑÑ,еĐ;ĐµĐ½Đ, ĐįÑ€Đ,Đ²Đ,Đ²ĐºĐ, Đ½Đ° ÑĐ²Đ¾Đ¹ÑÑ,Đ²Đ° ÑĐ¾Đ;Đ¾Đ»Đ,Đ¼ĐµÑ€Đ	¾Đ Ӫ.Ð ¹⁄₂	а Đở∕4ÑĐ¹⁄2⊙