
## Mitchell Goldfarb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5850858/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Missense variants in the N-terminal domain of the A isoform of FHF2/FGF13 cause an X-linked<br>developmental and epileptic encephalopathy. American Journal of Human Genetics, 2021, 108, 176-185.                                                   | 6.2  | 20        |
| 2  | Early onset epilepsy and sudden unexpected death in epilepsy with cardiac arrhythmia in mice carrying<br>the early infantile epileptic encephalopathy 47 gainâ€ofâ€function <i>FHF1(FGF12)</i> missense mutation.<br>Epilepsia, 2021, 62, 1546-1558. | 5.1  | 14        |
| 3  | lonic Mechanisms of Impulse Propagation Failure in the FHF2-Deficient Heart. Circulation Research, 2020, 127, 1536-1548.                                                                                                                             | 4.5  | 7         |
| 4  | Hyper-excitability and hyper-plasticity disrupt cerebellar signal transfer in the <i>IB2</i> KO mouse model of autism. Journal of Neuroscience, 2019, 39, 1985-18.                                                                                   | 3.6  | 23        |
| 5  | FHF2 SAFEGUARDS THE HEART AGAINST REDUCTIONS IN JUNCTIONAL CONDUCTANCE. Journal of the American College of Cardiology, 2019, 73, 350.                                                                                                                | 2.8  | 1         |
| 6  | FGF-Dependent, Context-Driven Role for FRS Adapters in the Early Telencephalon. Journal of Neuroscience, 2017, 37, 5690-5698.                                                                                                                        | 3.6  | 10        |
| 7  | Gain-of-function <i>FHF1</i> mutation causes early-onset epileptic encephalopathy with cerebellar atrophy. Neurology, 2016, 86, 2162-2170.                                                                                                           | 1.1  | 57        |
| 8  | FHF-independent conduction of action potentials along the leak-resistant cerebellar granule cell axon. Nature Communications, 2016, 7, 12895.                                                                                                        | 12.8 | 28        |
| 9  | Fhf2 gene deletion causes temperature-sensitive cardiac conduction failure. Nature Communications, 2016, 7, 12966.                                                                                                                                   | 12.8 | 29        |
| 10 | Fast-Onset Long-Term Open-State Block of Sodium Channels by A-type FHFs Mediates Classical Spike<br>Accommodation in Hippocampal Pyramidal Neurons. Journal of Neuroscience, 2014, 34, 16126-16139.                                                  | 3.6  | 41        |
| 11 | Voltage-gated sodium channel-associated proteins and alternative mechanisms of inactivation and block. Cellular and Molecular Life Sciences, 2012, 69, 1067-1076.                                                                                    | 5.4  | 55        |
| 12 | Long-term inactivation particle for voltage-gated sodium channels. Journal of Physiology, 2010, 588,<br>3695-3711.                                                                                                                                   | 2.9  | 77        |
| 13 | Behavioral and Cerebellar Transmission Deficits in Mice Lacking the Autism-Linked Gene Islet Brain-2.<br>Journal of Neuroscience, 2010, 30, 14805-14816.                                                                                             | 3.6  | 61        |
| 14 | Crystal Structure of a Fibroblast Growth Factor Homologous Factor (FHF) Defines a Conserved<br>Surface on FHFs for Binding and Modulation of Voltage-gated Sodium Channels. Journal of Biological<br>Chemistry, 2009, 284, 17883-17896.              | 3.4  | 121       |
| 15 | Axonal Na <sup>+</sup> Channels Ensure Fast Spike Activation and Back-Propagation in Cerebellar<br>Granule Cells. Journal of Neurophysiology, 2009, 101, 519-532.                                                                                    | 1.8  | 128       |
| 16 | Fibroblast Growth Factor Homologous Factors Control Neuronal Excitability through Modulation of Voltage-Gated Sodium Channels. Neuron, 2007, 55, 449-463.                                                                                            | 8.1  | 220       |
| 17 | Fibroblast growth factor homologous factors: Evolution, structure, and function. Cytokine and Growth Factor Reviews, 2005, 16, 215-220.                                                                                                              | 7.2  | 184       |
| 18 | Fibroblast Growth Factor Homologous Factor 2B: Association with Nav1.6 and Selective<br>Colocalization at Nodes of Ranvier of Dorsal Root Axons. Journal of Neuroscience, 2004, 24, 6765-6775.                                                       | 3.6  | 124       |

MITCHELL GOLDFARB

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Fibroblast Growth Factor (FGF) Homologous Factors Share Structural but Not Functional Homology with FGFs. Journal of Biological Chemistry, 2003, 278, 34226-34236.                                       | 3.4  | 221       |
| 20 | Fibroblast Growth Factor Homologous Factors and the Islet Brain-2 Scaffold Protein Regulate<br>Activation of a Stress-activated Protein Kinase. Journal of Biological Chemistry, 2002, 277, 49111-49119. | 3.4  | 90        |
| 21 | SNT-1/FRS2α physically interacts with Laloo and mediates mesoderm induction by fibroblast growth factor. Mechanisms of Development, 2001, 109, 195-204.                                                  | 1.7  | 16        |
| 22 | Fibroblast growth factor homologous factors are intracellular signaling proteins. Current Biology, 2001, 11, 793-797.                                                                                    | 3.9  | 119       |
| 23 | Multiple Effector Domains within SNT1 Coordinate ERK Activation and Neuronal Differentiation of PC12 Cells. Journal of Biological Chemistry, 2001, 276, 13049-13056.                                     | 3.4  | 35        |
| 24 | Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene.<br>Developmental Dynamics, 1999, 216, 72-88.                                                                 | 1.8  | 203       |
| 25 | Initiation of Mammalian Liver Development from Endoderm by Fibroblast Growth Factors. Science,<br>1999, 284, 1998-2003.                                                                                  | 12.6 | 660       |
| 26 | Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene.<br>Developmental Dynamics, 1999, 216, 72-88.                                                                 | 1.8  | 7         |
| 27 | Novel Recognition Motif on Fibroblast Growth Factor Receptor Mediates Direct Association and Activation of SNT Adapter Proteins. Journal of Biological Chemistry, 1998, 273, 17987-17990.                | 3.4  | 158       |
| 28 | Chromosomal Mapping of Two Novel HumanFGFGenes,FGF11andFGF12. Genomics, 1997, 40, 151-154.                                                                                                               | 2.9  | 35        |
| 29 | Murine FGF-12 and FGF-13: expression in embryonic nervous system, connective tissue and heart.<br>Mechanisms of Development, 1997, 64, 31-39.                                                            | 1.7  | 129       |
| 30 | Amino acid residues which distinguish the mitogenic potentials of two FGF receptors. Oncogene, 1997, 14, 1767-1778.                                                                                      | 5.9  | 31        |
| 31 | Of Worms and Men: An Evolutionary Perspective on the Fibroblast Growth Factor (FGF) and FGF<br>Receptor Families. Journal of Molecular Evolution, 1997, 44, 43-56.                                       | 1.8  | 181       |
| 32 | Functions of fibroblast growth factors in vertebrate development. Cytokine and Growth Factor Reviews, 1996, 7, 311-325.                                                                                  | 7.2  | 203       |
| 33 | Receptor Specificity of the Fibroblast Growth Factor Family. Journal of Biological Chemistry, 1996, 271, 15292-15297.                                                                                    | 3.4  | 1,491     |
| 34 | Evidence that fibroblast growth factor 5 is a major muscle-derived survival factor for cultured spinal motoneurons. Neuron, 1993, 10, 369-377.                                                           | 8.1  | 137       |
| 35 | Murine FGF-4 gene expression is spatially restricted within embryonic skeletal muscle and other tissues. Mechanisms of Development, 1993, 40, 155-163.                                                   | 1.7  | 51        |
| 36 | Trkl3 mediates BDNF/NT-3-dependent survival and proliferation in fibroblasts lacking the low affinity<br>NGF receptor. Cell, 1991, 66, 405-413.                                                          | 28.9 | 306       |

MITCHELL GOLDFARB

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Expression and Possible Functions of the FGF-5 Gene. Annals of the New York Academy of Sciences, 1991, 638, 38-52.                                                           | 3.8  | 35        |
| 38 | lsolation of cDNAs encoding four mouse FGF family members and characterization of their expression patterns during embryogenesis. Developmental Biology, 1990, 138, 454-463. | 2.0  | 268       |
| 39 | Functional homology of mammalian and yeast RAS genes. Cell, 1985, 40, 19-26.                                                                                                 | 28.9 | 350       |
| 40 | Structure of the Ki-ras gene of the human lung carcinoma cell line Calu-1. Nature, 1983, 304, 497-500.                                                                       | 27.8 | 406       |
| 41 | Structure and activation of the human N-ras gene. Cell, 1983, 34, 581-586.                                                                                                   | 28.9 | 529       |
| 42 | Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells. Nature, 1982, 296, 404-409.                                        | 27.8 | 489       |
| 43 | Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change.<br>Nature, 1982, 300, 762-765.                                            | 27.8 | 716       |
| 44 | Human-tumor-derived cell lines contain common and different transforming genes. Cell, 1981, 27, 467-476.                                                                     | 28.9 | 455       |