Luis Zea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5850810/publications.pdf

Version: 2024-02-01

	567281	839539
998	15	18
citations	h-index	g-index
19	19	831
docs citations	times ranked	citing authors
	citations 19	998 15 citations h-index 19 19

#	Article	IF	CITATIONS
1	Fortified wines. , 2022, , 629-668.		1
2	Optimization and validation of a DHS-TD-GC-MS method to wineomics studies. Talanta, 2019, 192, 301-307.	5.5	14
3	Acetaldehyde as Key Compound for the Authenticity of Sherry Wines: A Study Covering 5 Decades. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 681-693.	11.7	46
4	Optimization and validation of an automated DHS–TD–GC–MS method for the determination of aromatic esters in sweet wines. Talanta, 2014, 123, 32-38.	5.5	18
5	Chemical and morphological characterization of Chardonnay and Gew $\tilde{A}^{1}\!\!/\!$	8.2	17
6	Changes in aroma profile of musts from grapes cv. Pedro Ximenez chamber-dried at controlled conditions destined to the production of sweet Sherry wine. LWT - Food Science and Technology, 2014, 59, 560-565.	5.2	19
7	Aroma active compounds during the drying of grapes cv. Pedro Ximenez destined to the production of sweet Sherry wine. European Food Research and Technology, 2010, 230, 429-435.	3.3	75
8	Changes in aroma profile of sherry wines during the oxidative ageing. International Journal of Food Science and Technology, 2010, 45, 2425-2432.	2.7	17
9	Evaluation of the Active Odorants in Amontillado Sherry Wines during the Aging Process. Journal of Agricultural and Food Chemistry, 2010, 58, 6900-6904.	5.2	39
10	Comparison of Odor-Active Compounds in Sherry Wines Processed from Ecologically and Conventionally Grown Pedro Ximenez Grapes. Journal of Agricultural and Food Chemistry, 2009, 57, 968-973.	5.2	46
11	Odorant active compounds in Amontillado wines obtained by combination of two consecutive ageing processes. European Food Research and Technology, 2008, 227, 1687-1692.	3.3	20
12	Changes in Color and Odorant Compounds during Oxidative Aging of Pedro Ximenez Sweet Wines. Journal of Agricultural and Food Chemistry, 2007, 55, 3592-3598.	5.2	53
13	Aroma series as fingerprints for biological ageing in fino sherryâ€type wines. Journal of the Science of Food and Agriculture, 2007, 87, 2319-2326.	3.5	75
14	Aroma compounds as markers of the changes in sherry wines subjected to biological ageing. Food Control, 2005, 16, 333-338.	5.5	144
15	Analytical Study of Aromatic Series in Sherry Wines Subjected to Biological Aging. Journal of Agricultural and Food Chemistry, 2002, 50, 7356-7361.	5.2	152
16	Discrimination of the aroma fraction of Sherry wines obtained by oxidative and biological ageing. Food Chemistry, 2001, 75, 79-84.	8.2	125
17	Response of the Aroma Fraction in Sherry Wines Subjected to Accelerated Biological Aging. Journal of Agricultural and Food Chemistry, 1999, 47, 3297-3302.	5.2	50
18	The effects of grape must fermentation conditions on volatile alcohols and esters formed by Saccharomyces cerevisiae. Journal of the Science of Food and Agriculture, 1997, 75, 155-160.	3.5	80

#	Article	IF	CITATIONS
19	Comparative study of the ?-butyrolactone and pantolactone contents in cells and musts during vinification by three Saccharomyces cerevisiae races. Biotechnology Letters, 1995, 17, 1351.	2.2	7