Thomas C Resta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5850791/publications.pdf

Version: 2024-02-01

20 785 14 18
papers citations h-index g-index

20 20 20 722 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Acidâ€sensing ion channel 1 contributes to pulmonary arterial smooth muscle cell depolarization following hypoxic pulmonary hypertension. Journal of Physiology, 2021, 599, 4749-4762.	1.3	10
2	Augmented Pulmonary Vasoconstrictor Reactivity after Chronic Hypoxia Requires Src Kinase and Epidermal Growth Factor Receptor Signaling. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 61-73.	1.4	15
3	Coupling of store-operated calcium entry to vasoconstriction is acid-sensing ion channel 1a dependent in pulmonary but not mesenteric arteries. PLoS ONE, 2020, 15, e0236288.	1.1	6
4	Membrane depolarization is required for pressure-dependent pulmonary arterial tone but not enhanced vasoconstriction to endothelin-1 following chronic hypoxia. Pulmonary Circulation, 2020, 10, 204589402097355.	0.8	1
5	Altered Lipid Domains Facilitate Enhanced Pulmonary Vasoconstriction after Chronic Hypoxia. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 709-718.	1.4	6
6	RhoA increases ASIC1a plasma membrane localization and calcium influx in pulmonary arterial smooth muscle cells following chronic hypoxia. American Journal of Physiology - Cell Physiology, 2018, 314, C166-C176.	2.1	21
7	Role of G proteinâ€coupled estrogen receptors in pulmonary hypertension. FASEB Journal, 2018, 32, 892.4.	0.2	O
8	Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension. PLoS ONE, 2017, 12, e0180455.	1.1	45
9	Role of ASIC1 in the development of chronic hypoxia-induced pulmonary hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H41-H52.	1.5	46
10	Enhanced Depolarization-Induced Pulmonary Vasoconstriction Following Chronic Hypoxia Requires EGFR-Dependent Activation of NAD(P)H Oxidase 2. Antioxidants and Redox Signaling, 2013, 18, 1777-1788.	2.5	42
11	Chronic hypoxia upregulates pulmonary arterial ASIC1: a novel mechanism of enhanced store-operated Ca ²⁺ entry and receptor-dependent vasoconstriction. American Journal of Physiology - Cell Physiology, 2012, 302, C931-C940.	2.1	42
12	Chronic hypoxia augments depolarization-induced Ca ²⁺ sensitization in pulmonary vascular smooth muscle through superoxide-dependent stimulation of RhoA. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L232-L242.	1.3	60
13	ASIC1 contributes to pulmonary vascular smooth muscle store-operated Ca ²⁺ entry. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L271-L285.	1.3	41
14	Chronic hypoxia induces Rho kinase-dependent myogenic tone in small pulmonary arteries. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L797-L806.	1.3	80
15	Reactive oxygen species mediate RhoA/Rho kinase-induced Ca ²⁺ sensitization in pulmonary vascular smooth muscle following chronic hypoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L515-L529.	1.3	132
16	Differential effects of chronic hypoxia and intermittent hypocapnic and eucapnic hypoxia on pulmonary vasoreactivity. Journal of Applied Physiology, 2008, 104, 110-118.	1.2	61
17	Pressure-induced smooth muscle cell depolarization in pulmonary arteries from control and chronically hypoxic rats does not cause myogenic vasoconstriction. Journal of Applied Physiology, 2005, 98, 1119-1124.	1.2	28
18	Chronic hypoxia attenuates cGMP-dependent pulmonary vasodilation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L1366-L1375.	1.3	43

#	Article	IF	CITATIONS
19	Maintained upregulation of pulmonary eNOS gene and protein expression during recovery from chronic hypoxia. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H699-H708.	1.5	61
20	Role of endothelial carbon monoxide in attenuated vasoreactivity following chronic hypoxia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R1025-R1030.	0.9	45