José Antonio Encinar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5850693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Immune System of Marine Organisms as Source for Drugs against Infectious Diseases. Marine Drugs, 2022, 20, 363.	2.2	3
2	An inhibitor of interaction between the transcription factor NRF2 and the E3 ubiquitin ligase adapter β-TrCP delivers anti-inflammatory responses in mouse liver. Redox Biology, 2022, 55, 102396.	3.9	8
3	Bisphenol-S and Bisphenol-F alter mouse pancreatic β-cell ion channel expression and activity and insulin release through an estrogen receptor ERβ mediated pathway. Chemosphere, 2021, 265, 129051.	4.2	34
4	Metformin Is a Pyridoxal-5′-phosphate (PLP)-Competitive Inhibitor of SHMT2. Cancers, 2021, 13, 4009.	1.7	15
5	ERK5 signalling pathway is a novel target of sorafenib: Implication in EGF biology. Journal of Cellular and Molecular Medicine, 2021, 25, 10591-10603.	1.6	7
6	Peimine, an Anti-Inflammatory Compound from Chinese Herbal Extracts, Modulates Muscle-Type Nicotinic Receptors. International Journal of Molecular Sciences, 2021, 22, 11287.	1.8	7
7	The Interaction of Temozolomide with Blood Components Suggests the Potential Use of Human Serum Albumin as a Biomimetic Carrier for the Drug. Biomolecules, 2020, 10, 1015.	1.8	19
8	Quercetin metabolites from Hibiscus sabdariffa contribute to alleviate glucolipotoxicity-induced metabolic stress in vitro. Food and Chemical Toxicology, 2020, 144, 111606.	1.8	11
9	Differential Effects of IGF-1R Small Molecule Tyrosine Kinase Inhibitors BMS-754807 and OSI-906 on Human Cancer Cell Lines. Cancers, 2020, 12, 3717.	1.7	21
10	Potential Drugs Targeting Early Innate Immune Evasion of SARS-Coronavirus 2 via 2'-O-Methylation of Viral RNA. Viruses, 2020, 12, 525.	1.5	75
11	Silibinin and SARS-CoV-2: Dual Targeting of Host Cytokine Storm and Virus Replication Machinery for Clinical Management of COVID-19 Patients. Journal of Clinical Medicine, 2020, 9, 1770.	1.0	42
12	Location, Orientation and Aggregation of Bardoxolone-ME, CDDO-ME, in a Complex Phospholipid Bilayer Membrane. Journal of Membrane Biology, 2020, 253, 115-128.	1.0	2
13	Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging, 2020, 12, 8-34.	1.4	99
14	The LSD1 inhibitor iadademstat (ORY-1001) targets SOX2-driven breast cancer stem cells: a potential epigenetic therapy in luminal-B and HER2-positive breast cancer subtypes. Aging, 2020, 12, 4794-4814.	1.4	38
15	Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: A Comprehensive Review. Current Medicinal Chemistry, 2020, 27, 2576-2606.	1.2	106
16	Extra Virgin Olive Oil Contains a Phenolic Inhibitor of the Histone Demethylase LSD1/KDM1A. Nutrients, 2019, 11, 1656.	1.7	26
17	Revisiting silibinin as a novobiocin-like Hsp90â€ [−] C-terminal inhibitor: Computational modeling and experimental validation. Food and Chemical Toxicology, 2019, 132, 110645.	1.8	16
18	IFIT5 Participates in the Antiviral Mechanisms of Rainbow Trout Red Blood Cells. Frontiers in Immunology, 2019, 10, 613.	2.2	15

JOSé ANTONIO ENCINAR

#	Article	IF	CITATIONS
19	The extra virgin olive oil phenolic oleacein is a dual substrate-inhibitor of catechol-O-methyltransferase. Food and Chemical Toxicology, 2019, 128, 35-45.	1.8	27
20	Antiviral Activity of a Turbot (Scophthalmus maximus) NK-Lysin Peptide by Inhibition of Low-pH Virus-Induced Membrane Fusion. Marine Drugs, 2019, 17, 87.	2.2	27
21	The Potential Synergistic Modulation of AMPK by Lippia citriodora Compounds as a Target in Metabolic Disorders. Nutrients, 2019, 11, 2961.	1.7	16
22	New Mammalian Target of Rapamycin (mTOR) Modulators Derived from Natural Product Databases and Marine Extracts by Using Molecular Docking Techniques. Marine Drugs, 2018, 16, 385.	2.2	29
23	Plant-Derived Polyphenols in Human Health: Biological Activity, Metabolites and Putative Molecular Targets. Current Drug Metabolism, 2018, 19, 351-369.	0.7	42
24	Chromatin immunoprecipitation and high throughput sequencing of SVCV-infected zebrafish reveals novel epigenetic histone methylation patterns involved in antiviral immune response. Fish and Shellfish Immunology, 2018, 82, 514-521.	1.6	16
25	Discovery of nonnucleoside inhibitors of polymerase from infectious pancreatic necrosis virus (IPNV). Drug Design, Development and Therapy, 2018, Volume 12, 2337-2359.	2.0	10
26	Turbot (Scophthalmus maximus) Nk-lysin induces protection against the pathogenic parasite Philasterides dicentrarchi via membrane disruption. Fish and Shellfish Immunology, 2018, 82, 190-199.	1.6	34
27	Structure and functionalities of the human c-reactive protein compared to the zebrafish multigene family of c-reactive-like proteins. Developmental and Comparative Immunology, 2017, 69, 33-40.	1.0	21
28	Neutralization of viral infectivity by zebrafish c-reactive protein isoforms. Molecular Immunology, 2017, 91, 145-155.	1.0	19
29	Effects of metabolites derived from Hibiscus sabdariffa on high glucose-induced oxidative stress and inflammation in hypertrophied 3T3-L1 adipocytes. Free Radical Biology and Medicine, 2017, 108, S88.	1.3	0
30	Olive leaf polyphenols alleviate oxidative stress and improve mitochondrial function in high glucose-induced 3T3-L1 hypertrophic adipocytes. Free Radical Biology and Medicine, 2017, 108, S94.	1.3	1
31	An Updated Review on Marine Anticancer Compounds: The Use of Virtual Screening for the Discovery of Small-Molecule Cancer Drugs. Molecules, 2017, 22, 1037.	1.7	155
32	Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity. Nutrients, 2017, 9, 907.	1.7	55
33	AMPK modulatory activity of olive–tree leaves phenolic compounds: Bioassay-guided isolation on adipocyte model and in silico approach. PLoS ONE, 2017, 12, e0173074.	1.1	24
34	Looking for inhibitors of the dengue virus NS5 RNA-dependent RNA-polymerase using a molecular docking approach. Drug Design, Development and Therapy, 2016, Volume 10, 3163-3181.	2.0	38
35	In silico approach for the discovery of new PPARγ modulators among plant-derived polyphenols. Drug Design, Development and Therapy, 2015, 9, 5877.	2.0	37
36	Competing Lipid-Protein and Protein-Protein Interactions Determine Clustering and Gating Patterns in the Potassium Channel from Streptomyces lividans (KcsA). Journal of Biological Chemistry, 2015, 290, 25745-25755.	1.6	20

#	Article	IF	CITATIONS
37	Nucleotide binding triggers a conformational change of the CBS module of the magnesium transporter CNNM2 from a twisted towards a flat structure. Biochemical Journal, 2014, 464, 23-34.	1.7	41
38	Hepatitis C virus polymerase–polymerase contact interface: Significance for virus replication and antiviral design. Antiviral Research, 2014, 108, 14-24.	1.9	10
39	Lipid modulation of ion channels through specific binding sites. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1560-1567.	1.4	63
40	Partitioning of liquid-ordered/liquid-disordered membrane microdomains induced by the fluidifying effect of 2-hydroxylated fatty acid derivatives. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2553-2563.	1.4	43
41	Detergent-labile, supramolecular assemblies of KcsA: Relative abundance and interactions involved. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 193-200.	1.4	15
42	pH-Dependent Solution Structure and Activity of a Reduced Form of the Host-Defense Peptide Myticin C (Myt C) from the Mussel Mytilus galloprovincialis. Marine Drugs, 2013, 11, 2328-2346.	2.2	15
43	Mutation of Ser-50 and Cys-66 in Snapin Modulates Protein Structure and Stability. Biochemistry, 2012, 51, 3470-3484.	1.2	6
44	Contribution of Ion Binding Affinity to Ion Selectivity and Permeation in KcsA, a Model Potassium Channel. Biochemistry, 2012, 51, 3891-3900.	1.2	12
45	Nucleotide-induced conformational transitions in the CBS domain protein MJ0729 of Methanocaldococcus jannaschii. Protein Engineering, Design and Selection, 2011, 24, 161-169.	1.0	3
46	De Novo Polymerase Activity and Oligomerization of Hepatitis C Virus RNA-Dependent RNA-Polymerases from Genotypes 1 to 5. PLoS ONE, 2011, 6, e18515.	1.1	23
47	Ion Binding to KcsA: Implications in Ion Selectivity and Channel Gating. Biochemistry, 2010, 49, 9480-9487.	1.2	19
48	Occupancy of Nonannular Lipid Binding Sites on KcsA Greatly Increases the Stability of the Tetrameric Protein. Biochemistry, 2010, 49, 5397-5404.	1.2	30
49	Binding of S-Methyl-5′-Thioadenosine and S-Adenosyl-l-Methionine to Protein MJ0100 Triggers an Open-to-Closed Conformational Change in Its CBS Motif Pair. Journal of Molecular Biology, 2010, 396, 800-820.	2.0	42
50	ADAN: a database for prediction of protein–protein interaction of modular domains mediated by linear motifs. Bioinformatics, 2009, 25, 2418-2424.	1.8	36
51	Metal-triggered changes in the stability and secondary structure of a tetrameric dihydropyrimidinase: A biophysical characterization. Biophysical Chemistry, 2009, 139, 42-52.	1.5	13
52	The CBS Domain Protein MJ0729 of <i>Methanocaldococcus jannaschii</i> Is a Thermostable Protein with a pH-Dependent Self-Oligomerization. Biochemistry, 2009, 48, 2760-2776.	1.2	10
53	Interaction of transmembrane-spanning segments of the α2-adrenergic receptor with model membranes. Molecular Membrane Biology, 2009, 26, 265-278.	2.0	4
54	Lipid-protein Interactions Between α2-adrenergic Receptor Transmembrane Peptides And Model Membranes. Biophysical Journal, 2009, 96, 613a.	0.2	0

JOSé ANTONIO ENCINAR

#	Article	IF	CITATIONS
55	Protein-promoted membrane domains. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1583-1590.	1.4	37
56	N-type Inactivation of the Potassium Channel KcsA by the Shaker B "Ball―Peptide. Journal of Biological Chemistry, 2008, 283, 18076-18085.	1.6	12
57	Interaction of the C-Terminal Region of the GÎ ³ Protein with Model Membranes. Biophysical Journal, 2007, 93, 2530-2541.	0.2	18
58	The XII International Symposium on Cholinergic Mechanisms. Journal of Molecular Neuroscience, 2006, 30, 1-2.	1.1	0
59	Structural and Functional Changes Induced in the Nicotinic Acetylcholine Receptor by Membrane Phospholipids. Journal of Molecular Neuroscience, 2006, 30, 121-124.	1.1	7
60	Nicotinic Acetylcholine Receptor Properties are Modulated by Surrounding Lipids: An In Vivo Study. Journal of Molecular Neuroscience, 2006, 30, 5-6.	1.1	7
61	Structural and Functional Modulation of Ion Channels by Specific Lipids: from Model Systems to Cell Membranes. , 2006, , 203-231.		1
62	Clustering and Coupled Gating Modulate the Activity in KcsA, a Potassium Channel Model. Journal of Biological Chemistry, 2006, 281, 18837-18848.	1.6	72
63	Effects of Conducting and Blocking Ions on the Structure and Stability of the Potassium Channel KcsA. Journal of Biological Chemistry, 2006, 281, 29905-29915.	1.6	30
64	Unfolding and Refolding in Vitro of a Tetrameric, α-Helical Membrane Protein: The Prokaryotic Potassium Channel KcsAâ€. Biochemistry, 2005, 44, 14344-14352.	1.2	60
65	The influence of a membrane environment on the structure and stability of a prokaryotic potassium channel, KcsA. FEBS Letters, 2005, 579, 5199-5204.	1.3	24
66	Influence of C-Terminal Protein Domains and Proteinâ^'Lipid Interactions on Tetramerization and Stability of the Potassium Channel KcsAâ€. Biochemistry, 2004, 43, 14924-14931.	1.2	58
67	Intrinsic Tyrosine Fluorescence as a Tool To Study the Interaction of the Shaker B "Ball―Peptide with Anionic Membranesâ€. Biochemistry, 2003, 42, 7124-7132.	1.2	47
68	Probing the Channel-BoundShakerB Inactivating Peptide by Stereoisomeric Substitution at a Strategic Tyrosine Residueâ€. Biochemistry, 2003, 42, 8879-8884.	1.2	3
69	Tyrosine Phosphorylation of the Inactivating Peptide of the Shaker B Potassium Channel:  A Structuralâ^'Functional Correlate. Biochemistry, 2002, 41, 12263-12269.	1.2	9
70	Segregation of Phosphatidic Acid-Rich Domains in Reconstituted Acetylcholine Receptor Membranes. Biochemistry, 2002, 41, 12253-12262.	1.2	37
71	Salmonid viral haemorrhagic septicaemia virus: fusion-related enhancement of virus infectivity by peptides derived from viral glycoprotein G or a combinatorial library. Journal of General Virology, 2002, 83, 2671-2681.	1.3	26
72	Human p8 Is a HMG-I/Y-like Protein with DNA Binding Activity Enhanced by Phosphorylation. Journal of Biological Chemistry, 2001, 276, 2742-2751.	1.6	110

#	Article	IF	CITATIONS
73	A Protein G Fragment from the Salmonid Viral Hemorrhagic Septicemia Rhabdovirus Induces Cell-to-Cell Fusion and Membrane Phosphatidylserine Translocation at Low pH. Journal of Biological Chemistry, 2001, 276, 46268-46275.	1.6	33
74	Effect of the inactivating "ball" peptide of Shaker B on intermediate conductance Ca 2+ -dependent inwardly rectifying K + channels of HeLa cells. Pflugers Archiv European Journal of Physiology, 1999, 438, 879-882.	1.3	1
75	Effect of the inactivating "ball" peptide of Shaker B on intermediate conductance Ca2+-dependent inwardly rectifying K+ channels of HeLa cells. Pflugers Archiv European Journal of Physiology, 1999, 438, 879-882.	1.3	Ο
76	34 The segregation of a lipid domain underlies structural and functional modulation of acetylcholine receptor in reconstituted membranes. Journal of Physiology (Paris), 1998, 92, 432-433.	2.1	1
77	Structural stabilization of botulinum neurotoxins by tyrosine phosphorylation. FEBS Letters, 1998, 429, 78-82.	1.3	25
78	Inactivating peptide of the Shaker B potassium channel: conformational preferences inferred from studies on simple model systems. Biochemical Journal, 1998, 331, 497-504.	1.7	10
79	Removal of spectral noise in the quantitation of protein structure through infrared band decomposition. , 1997, 3, 469-475.		25
80	Interaction between ion channel-inactivating peptides and anionic phospholipid vesicles as model targets. Biophysical Journal, 1996, 71, 1313-1323.	0.2	13
81	Synthesis of a photoaffinity labeling analogue of the inactivating peptide of theShakerB potassium channel. FEBS Letters, 1996, 398, 81-86.	1.3	3
82	Structural Properties of the Putative Fusion Peptide of Hepatitis B Virus Upon Interaction with Phospholipids. Circular Dichroism and Fourier-Transform Infrared Spectroscopy Studies. FEBS Journal, 1996, 242, 243-248.	0.2	20
83	Enzymatic Determination of Phosphatidylcholine, Sphingomyelin and Phosphatidylglycerol in Lipid Dispersions, Blood Cell Membranes and Rat Pulmonary Surfactant. Clinical Chemistry and Laboratory Medicine, 1996, 34, 9-15.	1.4	1