
## Anthony E Kline

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5850214/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis. Neuroscience<br>and Biobehavioral Reviews, 2009, 33, 981-1003.                                                                                                   | 2.9 | 221       |
| 2  | Attenuation of Working Memory and Spatial Acquisition Deficits after a Delayed and Chronic<br>Bromocriptine Treatment Regimen in Rats Subjected to Traumatic Brain Injury by Controlled Cortical<br>Impact. Journal of Neurotrauma, 2002, 19, 415-425. | 1.7 | 142       |
| 3  | Chronic methylphenidate treatment enhances water maze performance following traumatic brain<br>injury in rats. Neuroscience Letters, 2000, 280, 163-166.                                                                                               | 1.0 | 112       |
| 4  | Administration of haloperidol and risperidone after neurobehavioral testing hinders the recovery of traumatic brain injury-induced deficits. Life Sciences, 2008, 83, 602-607.                                                                         | 2.0 | 100       |
| 5  | Empirical Comparison of Typical and Atypical Environmental Enrichment Paradigms on Functional and<br>Histological Outcome after Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2010, 27,<br>1047-1057.                                   | 1.7 | 100       |
| 6  | Emerging Therapies in Traumatic Brain Injury. Seminars in Neurology, 2015, 35, 083-100.                                                                                                                                                                | 0.5 | 100       |
| 7  | Acute treatment with the 5-HT1A receptor agonist 8-OH-DPAT and chronic environmental enrichment confer neurobehavioral benefit after experimental brain trauma. Behavioural Brain Research, 2007, 177, 186-194.                                        | 1.2 | 99        |
| 8  | Chronic administration of antipsychotics impede behavioral recovery after experimental traumatic brain injury. Neuroscience Letters, 2008, 448, 263-267.                                                                                               | 1.0 | 85        |
| 9  | Bromocriptine Reduces Lipid Peroxidation and Enhances Spatial Learning and Hippocampal Neuron<br>Survival in a Rodent Model of Focal Brain Trauma. Journal of Neurotrauma, 2004, 21, 1712-1722.                                                        | 1.7 | 84        |
| 10 | Gender associations with chronic methylphenidate treatment and behavioral performance following experimental traumatic brain injury. Behavioural Brain Research, 2007, 181, 200-209.                                                                   | 1.2 | 84        |
| 11 | Environmental Enrichment as a Viable Neurorehabilitation Strategy for Experimental Traumatic Brain<br>Injury. Journal of Neurotrauma, 2014, 31, 873-888.                                                                                               | 1.7 | 82        |
| 12 | Amantadine improves water maze performance without affecting motor behavior following traumatic brain injury in rats. Restorative Neurology and Neuroscience, 1999, 14, 285-294.                                                                       | 0.4 | 79        |
| 13 | Found in translation: Understanding the biology and behavior of experimental traumatic brain injury.<br>Neuroscience and Biobehavioral Reviews, 2015, 58, 123-146.                                                                                     | 2.9 | 75        |
| 14 | Combination therapies for neurobehavioral and cognitive recovery after experimental traumatic brain injury: Is more better?. Progress in Neurobiology, 2016, 142, 45-67.                                                                               | 2.8 | 75        |
| 15 | Evaluation of a Combined Therapeutic Regimen of 8-OH-DPAT and Environmental Enrichment after Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2010, 27, 2021-2032.                                                                         | 1.7 | 73        |
| 16 | Environmental enrichment promotes robust functional and histological benefits in female rats after controlled cortical impact injury. Experimental Neurology, 2013, 247, 410-418.                                                                      | 2.0 | 68        |
| 17 | Environmental enrichment-mediated functional improvement after experimental traumatic brain injury is contingent on task-specific neurobehavioral experience. Neuroscience Letters, 2008, 431, 226-230.                                                | 1.0 | 67        |
| 18 | Acute systemic administration of interleukin-10 suppresses the beneficial effects of moderate hypothermia following traumatic brain injury in rats. Brain Research, 2002, 937, 22-31.                                                                  | 1.1 | 66        |

ANTHONY E KLINE

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Temporal Effects of Environmental Enrichment–Mediated Functional Improvement After Experimental<br>Traumatic Brain Injury in Rats. Neurorehabilitation and Neural Repair, 2011, 25, 558-564.                                                                | 1.4 | 66        |
| 20 | Time dependent alterations in dopamine tissue levels and metabolism after experimental traumatic brain injury in rats. Neuroscience Letters, 2004, 372, 127-131.                                                                                            | 1.0 | 64        |
| 21 | Divergent Long-Term Consequences of Chronic Treatment with Haloperidol, Risperidone, and<br>Bromocriptine on Traumatic Brain Injury–Induced Cognitive Deficits. Journal of Neurotrauma, 2015, 32,<br>590-597.                                               | 1.7 | 64        |
| 22 | Methylphenidate treatment following ablation-induced hemiplegia in rat: Experience during drug<br>action alters effects on recovery of function. Pharmacology Biochemistry and Behavior, 1994, 48,<br>773-779.                                              | 1.3 | 62        |
| 23 | Abbreviated Environmental Enrichment Enhances Neurobehavioral Recovery Comparably to<br>Continuous Exposure After Traumatic Brain Injury. Neurorehabilitation and Neural Repair, 2011, 25,<br>343-350.                                                      | 1.4 | 61        |
| 24 | Differential effects of single versus multiple administrations of haloperidol and risperidone on functional outcome after experimental brain trauma. Critical Care Medicine, 2007, 35, 919-924.                                                             | 0.4 | 59        |
| 25 | A Relatively Brief Exposure to Environmental Enrichment after Experimental Traumatic Brain Injury<br>Confers Long-Term Cognitive Benefits. Journal of Neurotrauma, 2012, 29, 2684-2688.                                                                     | 1.7 | 58        |
| 26 | The Therapeutic Efficacy Conferred by the 5-HT1A Receptor Agonist<br>8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) after Experimental Traumatic Brain Injury Is Not<br>Mediated by Concomitant Hypothermia. Journal of Neurotrauma, 2004, 21, 175-185. | 1.7 | 55        |
| 27 | Old Dog, New Tricks: The Attentional Set-Shifting Test as a Novel Cognitive Behavioral Task after<br>Controlled Cortical Impact Injury. Journal of Neurotrauma, 2014, 31, 926-937.                                                                          | 1.7 | 54        |
| 28 | A delayed and chronic treatment regimen with the 5-HT1A receptor agonist 8-OH-DPAT after cortical<br>impact injury facilitates motor recovery and acquisition of spatial learning. Behavioural Brain<br>Research, 2008, 194, 79-85.                         | 1.2 | 51        |
| 29 | Deciphering of Mitochondrial Cardiolipin Oxidative Signaling in Cerebral Ischemia-Reperfusion.<br>Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 319-328.                                                                                         | 2.4 | 51        |
| 30 | Protective effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin against<br>traumatic brain injury-induced cognitive deficits and neuropathology in adult male rats.<br>Neuroscience Letters, 2002, 333, 179-182.                   | 1.0 | 50        |
| 31 | Traumatic Brain Injury-Induced Cognitive and Histological Deficits Are Attenuated by Delayed and<br>Chronic Treatment with the 5-HT <sub>1A</sub> -Receptor Agonist Buspirone. Journal of Neurotrauma,<br>2012, 29, 1898-1907.                              | 1.7 | 47        |
| 32 | Evaluation of a Combined Treatment Paradigm Consisting of Environmental Enrichment and the 5-HT1A<br>Receptor Agonist Buspirone after Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2012,<br>29, 1960-1969.                                  | 1.7 | 46        |
| 33 | A Combined Therapeutic Regimen of Buspirone and Environmental Enrichment Is More Efficacious than<br>Either Alone in Enhancing Spatial Learning in Brain-Injured Pediatric Rats. Journal of Neurotrauma,<br>2014, 31, 1934-1941.                            | 1.7 | 37        |
| 34 | Donepezil Is Ineffective in Promoting Motor and Cognitive Benefits after Controlled Cortical Impact<br>Injury in Male Rats. Journal of Neurotrauma, 2013, 30, 557-564.                                                                                      | 1.7 | 33        |
| 35 | Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology. ELife, 2021, 10, .                                                                                                                                                  | 2.8 | 33        |
| 36 | Paths to Successful Translation of New Therapies for Severe Traumatic Brain Injury in the Golden Age<br>of Traumatic Brain Injury Research: A Pittsburgh Vision. Journal of Neurotrauma, 2020, 37, 2353-2371.                                               | 1.7 | 31        |

ANTHONY E KLINE

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Combining the Antipsychotic Drug Haloperidol and Environmental Enrichment after Traumatic Brain<br>Injury Is a Double-Edged Sword. Journal of Neurotrauma, 2017, 34, 451-458.                                                  | 1.7 | 30        |
| 38 | The neurobehavioral benefit conferred by a single systemic administration of 8-OH-DPAT after brain trauma is confined to a narrow therapeutic window. Neuroscience Letters, 2007, 416, 165-168.                                | 1.0 | 28        |
| 39 | Biologic and Plastic Effects of Experimental Traumatic Brain Injury Treatment Paradigms and Their<br>Relevance to Clinical Rehabilitation. PM and R, 2011, 3, S18-27.                                                          | 0.9 | 28        |
| 40 | 5-hydroxytryptamine 1A (5-HT 1A ) receptor agonists: A decade of empirical evidence supports their use<br>as an efficacious therapeutic strategy for brain trauma. Brain Research, 2016, 1640, 5-14.                           | 1.1 | 28        |
| 41 | Environmental enrichment, alone or in combination with various pharmacotherapies, confers marked benefits after traumatic brain injury. Neuropharmacology, 2019, 145, 13-24.                                                   | 2.0 | 28        |
| 42 | Abbreviated environmental enrichment confers neurobehavioral, cognitive, and histological benefits<br>in brain-injured female rats. Experimental Neurology, 2016, 286, 61-68.                                                  | 2.0 | 27        |
| 43 | The Therapeutic Efficacy of Environmental Enrichment and Methylphenidate Alone and in Combination after Controlled Cortical Impact Injury. Journal of Neurotrauma, 2017, 34, 444-450.                                          | 1.7 | 26        |
| 44 | Elucidating opportunities and pitfalls in the treatment of experimental traumatic brain injury to optimize and facilitate clinical translation. Neuroscience and Biobehavioral Reviews, 2018, 85, 160-175.                     | 2.9 | 26        |
| 45 | Refining environmental enrichment to advance rehabilitation based research after experimental<br>traumatic brain injury. Experimental Neurology, 2017, 294, 12-18.                                                             | 2.0 | 23        |
| 46 | Chronic treatment with galantamine rescues reversal learning in an attentional set-shifting test<br>after experimental brain trauma. Experimental Neurology, 2019, 315, 32-41.                                                 | 2.0 | 22        |
| 47 | Galantamine and Environmental Enrichment Enhance Cognitive Recovery after Experimental Traumatic<br>Brain Injury But Do Not Confer Additional Benefits When Combined. Journal of Neurotrauma, 2017, 34,<br>1610-1622.          | 1.7 | 21        |
| 48 | Elucidating the role of 5-HT1A and 5-HT7 receptors on 8-OH-DPAT-induced behavioral recovery after experimental traumatic brain injury. Neuroscience Letters, 2012, 515, 153-156.                                               | 1.0 | 20        |
| 49 | Delayed and Abbreviated Environmental Enrichment after Brain Trauma Promotes Motor and Cognitive<br>Recovery That Is Not Contingent on Increased Neurogenesis. Journal of Neurotrauma, 2019, 36, 756-767.                      | 1.7 | 20        |
| 50 | Early life stress increases vulnerability to the sequelae of pediatric mild traumatic brain injury.<br>Experimental Neurology, 2020, 329, 113318.                                                                              | 2.0 | 20        |
| 51 | Comparable impediment of cognitive function in female and male rats subsequent to daily<br>administration of haloperidol after traumatic brain injury. Experimental Neurology, 2017, 296, 62-68.                               | 2.0 | 19        |
| 52 | Preclinical Models of Traumatic Brain Injury: Emerging Role of Glutamate in the Pathophysiology of<br>Depression. Frontiers in Pharmacology, 2018, 9, 579.                                                                     | 1.6 | 17        |
| 53 | Early Life Stress Preceding Mild Pediatric Traumatic Brain Injury Increases Neuroinflammation but<br>Does Not Exacerbate Impairment of Cognitive Flexibility during Adolescence. Journal of Neurotrauma,<br>2021, 38, 411-421. | 1.7 | 17        |
| 54 | Environmental enrichment and amantadine confer individual but nonadditive enhancements in motor and spatial learning after controlled cortical impact injury. Brain Research, 2019, 1714, 227-233.                             | 1.1 | 15        |

ANTHONY E KLINE

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Dose-dependent neurorestorative effects of amantadine after cortical impact injury. Neuroscience<br>Letters, 2019, 694, 69-73.                                                                                                          | 1.0 | 13        |
| 56 | Rehabilitative Success After Brain Trauma by Augmenting a Subtherapeutic Dose of Environmental<br>Enrichment With Galantamine. Neurorehabilitation and Neural Repair, 2017, 31, 977-985.                                                | 1.4 | 12        |
| 57 | Chronic unpredictable stress during adolescence protects against adult traumatic brain injury-induced affective and cognitive deficits. Brain Research, 2021, 1767, 147544.                                                             | 1.1 | 11        |
| 58 | Systemic administration of donepezil attenuates the efficacy of environmental enrichment on<br>neurobehavioral outcome after experimental traumatic brain injury. Restorative Neurology and<br>Neuroscience, 2018, 36, 45-57.           | 0.4 | 9         |
| 59 | Intermittent treatment with haloperidol or quetiapine does not disrupt motor and cognitive recovery after experimental brain trauma. Behavioural Brain Research, 2018, 340, 159-164.                                                    | 1.2 | 9         |
| 60 | Disruption of basal forebrain cholinergic neurons after traumatic brain injury does not compromise environmental enrichment-mediated cognitive benefits. Brain Research, 2021, 1751, 147175.                                            | 1.1 | 7         |
| 61 | Aripiprazole and environmental enrichment independently improve functional outcome after cortical impact injury in adult male rats, but their combination does not yield additional benefits. Experimental Neurology, 2019, 314, 67-73. | 2.0 | 6         |
| 62 | Intranasally Administered L-Myc-Immortalized Human Neural Stem Cells Migrate to Primary and Distal<br>Sites of Damage after Cortical Impact and Enhance Spatial Learning. Stem Cells International, 2021,<br>2021, 1-11.                | 1.2 | 5         |
| 63 | Intermittent Administration of Haloperidol after Cortical Impact Injury Neither Impedes Spontaneous<br>Recovery Nor Attenuates the Efficacy of Environmental Enrichment. Journal of Neurotrauma, 2019, 36,<br>1606-1614.                | 1.7 | 4         |
| 64 | Albeit nocturnal, rats subjected to traumatic brain injury do not differ in neurobehavioral performance whether tested during the day or night. Neuroscience Letters, 2018, 665, 212-216.                                               | 1.0 | 3         |
| 65 | Spontaneous recovery of traumatic brain injury-induced functional deficits is not hindered by daily administration of lorazepam. Behavioural Brain Research, 2018, 339, 215-221.                                                        | 1.2 | 3         |
| 66 | Preclinical neurorehabilitation with environmental enrichment confers cognitive and histological benefits in a model of pediatric asphyxial cardiac arrest. Experimental Neurology, 2021, 335, 113522.                                  | 2.0 | 3         |
| 67 | Spontaneous recovery after controlled cortical impact injury is not impeded by intermittent administration of the antipsychotic drug risperidone. Neuroscience Letters, 2018, 682, 69-73.                                               | 1.0 | 2         |
| 68 | Brain injury and recovery. Brain Research, 2016, 1640, 1-4.                                                                                                                                                                             | 1.1 | 0         |