Hongxiang Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5850192/publications.pdf Version: 2024-02-01

HONCYLANC XIE

#	Article	IF	CITATIONS
1	Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydrate Polymers, 2019, 209, 130-144.	10.2	647
2	Recent advances in cellulose and its derivatives for oilfield applications. Carbohydrate Polymers, 2021, 259, 117740.	10.2	229
3	Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Industrial Crops and Products, 2019, 130, 184-197.	5.2	205
4	Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: A review. Chemical Engineering Journal, 2020, 382, 122937.	12.7	201
5	Cellulose based composite foams and aerogels for advanced energy storage devices. Chemical Engineering Journal, 2021, 426, 130817.	12.7	170
6	Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials. International Journal of Polymer Science, 2018, 2018, 1-25.	2.7	162
7	Cellulose Nanopaper: Fabrication, Functionalization, and Applications. Nano-Micro Letters, 2022, 14, 104.	27.0	161
8	Lignin-containing cellulose nanomaterials: preparation and applications. Green Chemistry, 2021, 23, 9723-9746.	9.0	159
9	Lignin-based electrodes for energy storage application. Industrial Crops and Products, 2021, 165, 113425.	5.2	157
10	Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose, 2016, 23, 2389-2407.	4.9	139
11	Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Industrial Crops and Products, 2019, 128, 177-185.	5.2	129
12	Facile Extraction of Thermally Stable and Dispersible Cellulose Nanocrystals with High Yield via a Green and Recyclable FeCl ₃ -Catalyzed Deep Eutectic Solvent System. ACS Sustainable Chemistry and Engineering, 2019, 7, 7200-7208.	6.7	122
13	Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Industrial Crops and Products, 2016, 94, 736-745.	5.2	121
14	Fabrication and applications of cellulose-based nanogenerators. Advanced Composites and Hybrid Materials, 2021, 4, 865-884.	21.1	121
15	Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Advanced Composites and Hybrid Materials, 2022, 5, 1078-1089.	21.1	118
16	Highly Efficient Preparation of Functional and Thermostable Cellulose Nanocrystals via H2SO4 Intensified Acetic Acid Hydrolysis. Carbohydrate Polymers, 2020, 239, 116233.	10.2	107
17	Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Advanced Composites and Hybrid Materials, 2022, 5, 1168-1179.	21.1	100
18	Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohydrate Polymers, 2021, 267, 118220.	10.2	99

HONGXIANG XIE

#	Article	IF	CITATIONS
19	Highly Efficient and Sustainable Preparation of Carboxylic and Thermostable Cellulose Nanocrystals via FeCl ₃ -Catalyzed Innocuous Citric Acid Hydrolysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 16691-16700.	6.7	96
20	Novel lignin-based phenolic nanosphere supported palladium nanoparticles with highly efficient catalytic performance and good reusability. Industrial Crops and Products, 2020, 145, 112164.	5.2	94
21	Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes. Carbon, 2022, 196, 819-827.	10.3	91
22	Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydrate Polymers, 2021, 266, 118107.	10.2	86
23	One-pot lignin depolymerization and activation by solid acid catalytic phenolation for lightweight phenolic foam preparation. Industrial Crops and Products, 2018, 124, 216-225.	5.2	82
24	Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohydrate Polymers, 2019, 223, 115116.	10.2	81
25	Lignin fractionation: Effective strategy to reduce molecule weight dependent heterogeneity for upgraded lignin valorization. Industrial Crops and Products, 2021, 165, 113442.	5.2	78
26	Comparative Evaluation of the Efficient Conversion of Corn Husk Filament and Corn Husk Powder to Valuable Materials via a Sustainable and Clean Biorefinery Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 1327-1336.	6.7	73
27	Synthesis of lignin-functionalized phenolic nanosphere supported Ag nanoparticles with excellent dispersion stability and catalytic performance. Green Chemistry, 2020, 22, 2879-2888.	9.0	71
28	Cellulose Nanomaterials for Oil Exploration Applications. Polymer Reviews, 2022, 62, 585-625.	10.9	63
29	Flexible and porous Co3O4-carbon nanofibers as binder-free electrodes for supercapacitors. Advanced Composites and Hybrid Materials, 2021, 4, 1367-1383.	21.1	54
30	Subdivision of bamboo kraft lignin by one-step ethanol fractionation to enhance its water-solubility and antibacterial performance. International Journal of Biological Macromolecules, 2019, 133, 156-164.	7.5	53
31	Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst. Waste Management, 2020, 108, 119-126.	7.4	51
32	Efficient catalytic production of biomass-derived levulinic acid over phosphotungstic acid in deep eutectic solvent. Industrial Crops and Products, 2020, 145, 112154.	5.2	50
33	Green and efficient production of furfural from corn cob over H-ZSM-5 using Î ³ -valerolactone as solvent. Industrial Crops and Products, 2018, 120, 343-350.	5.2	48
34	Resistance to aggregation-caused quenching: chitosan-based solid carbon dots for white light-emitting diode and 3D printing. Advanced Composites and Hybrid Materials, 2022, 5, 1865-1875.	21.1	45
35	Kinetic study of furfural production from Eucalyptus sawdust using H-SAPO-34 as solid BrÃ,nsted acid and Lewis acid catalysts in biomass-derived solvents. Industrial Crops and Products, 2019, 135, 196-205.	5.2	44
36	High efficient recovery of L-lactide with lignin-based filler by thermal degradation. Industrial Crops and Products, 2020, 143, 111954.	5.2	43

HONGXIANG XIE

#	Article	IF	CITATIONS
37	Valorization of corn stover into furfural and levulinic acid over SAPO-18 zeolites: Effect of BrÃ,nsted to Lewis acid sites ratios. Industrial Crops and Products, 2019, 141, 111759.	5.2	42
38	Sustainable production of cellulose nanofibrils from Kraft pulp for the stabilization of oil-in-water Pickering emulsions. Industrial Crops and Products, 2022, 185, 115123.	5.2	36
39	Lignin as a Novel Tyrosinase Inhibitor: Effects of Sources and Isolation Processes. ACS Sustainable Chemistry and Engineering, 2018, 6, 9510-9518.	6.7	33
40	Fabrication of lignin nanospheres by emulsification in a binary γ-valerolactone/glycerol system and their application as a bifunctional reducer and carrier for Pd nanoparticles with enhanced catalytic activity. Green Chemistry, 2020, 22, 8594-8603.	9.0	32
41	Valorization of Enzymatic Hydrolysis Residues from Corncob into Lignin-Containing Cellulose Nanofibrils and Lignin Nanoparticles. Frontiers in Bioengineering and Biotechnology, 2021, 9, 677963.	4.1	28
42	Multifunctional Lignin-Based Composite Materials for Emerging Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 708976.	4.1	25
43	Lignin nanoparticles for hydrogel-based pressure sensor. Industrial Crops and Products, 2022, 176, 114366.	5.2	23
44	Phosphotungstic acid functionalized biochar for furfural production from corncob. Fuel Processing Technology, 2022, 229, 107178.	7.2	22
45	Research Progress of Highly Efficient Noble Metal Catalysts for the Oxidation of 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	6.8	21
46	Functionality study of lignin as a tyrosinase inhibitor: Influence of lignin heterogeneity on anti-tyrosinase activity. International Journal of Biological Macromolecules, 2019, 128, 107-113.	7.5	20
47	The Kinetics Studies on Hydrolysis of Hemicellulose. Frontiers in Chemistry, 2021, 9, 781291.	3.6	20
48	Alkylation modification for lignin color reduction and molecular weight adjustment. International Journal of Biological Macromolecules, 2022, 201, 400-410.	7.5	18
49	Lignin-Based/Polypyrrole Carbon Nanofiber Electrode With Enhanced Electrochemical Properties by Electrospun Method. Frontiers in Chemistry, 2022, 10, 841956.	3.6	18
50	Green assembly of high-density and small-sized silver nanoparticles on lignosulfonate-phenolic resin spheres: Focusing on multifunction of lignosulfonate. International Journal of Biological Macromolecules, 2021, 166, 893-901.	7.5	16
51	Cellulose Nanofibrils-based Hydrogels for Biomedical Applications: Progresses and Challenges. Current Medicinal Chemistry, 2020, 27, 4622-4646.	2.4	16
52	Effects of different amounts of cellulase on the microstructure and soluble substances of cotton stalk bark. Advanced Composites and Hybrid Materials, 2022, 5, 1294-1306.	21.1	15
53	Reduction of lignin heterogeneity for improved catalytic performance of lignin nanosphere supported Pd nanoparticles. Industrial Crops and Products, 2022, 180, 114685.	5.2	15
54	Tyrosinase inhibitory performance of hydrolysate from post-washing liquor of steam exploded corn stalk and its fractionation enhancement. Industrial Crops and Products, 2020, 154, 112652.	5.2	13

HONGXIANG XIE

#	Article	IF	CITATIONS
55	Recent Advances in Hydrophobic Modification of Nanocellulose. Current Organic Chemistry, 2021, 25, 417-436.	1.6	13
56	Preparation and Application in Water Treatment of Magnetic Biochar. Frontiers in Bioengineering and Biotechnology, 2021, 9, 769667.	4.1	12
57	Effects of two different enzyme treatments on the microstructure of outer surface of wheat straw. Advanced Composites and Hybrid Materials, 2022, 5, 934-947.	21.1	12
58	Genetic Diversity, Chemical Components, and Property of Biomass Paris polyphylla var. yunnanensis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 713860.	4.1	10
59	Reduction of lignin heterogeneity using aqueous two-phase system: A facile and universal "one-step-three-fractions―approach. International Journal of Biological Macromolecules, 2021, 186, 341-350.	7.5	10
60	One step synthesis of Mo-doped carbon microspheres for valorization corncob to levulinic acid. Industrial Crops and Products, 2022, 184, 115019.	5.2	10
61	Novel Surfactant-Assisted Hydrothermal Fabrication of a Lignin Microsphere as a Green Reducer and Carrier for Pd Nanoparticles. ACS Sustainable Chemistry and Engineering, 2021, 9, 17085-17095.	6.7	6
62	Ulmus davidiana var. japonica Extracts Suppress Lipopolysaccharide-Induced Apoptosis Through Intracellular Calcium Modulation in U937 Macrophages. Frontiers in Energy Research, 2022, 10, .	2.3	3
63	Novel and Efficient Lignin Fractionation Processes for Tailing Lignin-Based Materials. , 2021, , 363-387.		0