
Kazumasa A Takeuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5849897/publications.pdf Version: 2024-02-01

KAZUMASA A TAKEUCHI

#	Article	IF	CITATIONS
1	Phase-ordering kinetics in the Allen-Cahn (Model A) class: Universal aspects elucidated by electrically induced transition in liquid crystals. Physical Review E, 2021, 104, 054103.	2.1	6
2	Initial perturbation matters: Implications of geometry-dependent universal Kardar–Parisi–Zhang statistics for spatiotemporal chaos. Chaos, 2021, 31, 111103.	2.5	1
3	Scale invariance of cell size fluctuations in starving bacteria. Communications Physics, 2021, 4, .	5.3	6
4	Direct Evidence for Universal Statistics of Stationary Kardar-Parisi-Zhang Interfaces. Physical Review Letters, 2020, 124, 250602.	7.8	6
5	Kardar-Parisi-Zhang Interfaces with Curved Initial Shapes and Variational Formula. Physical Review Letters, 2020, 124, 060601.	7.8	10
6	Lane formation and critical coarsening in a model of bacterial competition. Physical Review E, 2019, 99, 042403.	2.1	5
7	An appetizer to modern developments on the Kardar–Parisi–Zhang universality class. Physica A: Statistical Mechanics and Its Applications, 2018, 504, 77-105.	2.6	100
8	When fast and slow interfaces grow together: Connection to the half-space problem of the Kardar-Parisi-Zhang class. Physical Review E, 2018, 97, 040103.	2.1	9
9	Measuring Lyapunov exponents of large chaotic systems with global coupling by time series analysis. Chaos, 2018, 28, 121103.	2.5	3
10	1/ <i>f</i> ^{<i>α</i>} power spectrum in the Kardar–Parisi–Zhang universality class. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 264006.	2.1	9
11	Memory and Universality in Interface Growth. Physical Review Letters, 2017, 118, 125701.	7.8	31
12	Kardar-Parisi-Zhang Interfaces with Inward Growth. Physical Review Letters, 2017, 119, 030602.	7.8	19
13	Characteristic Sign Renewals of Kardar–Parisi–Zhang Fluctuations. Journal of Statistical Physics, 2016, 164, 1167-1182.	1.2	11
14	Estimating the Dimension of an Inertial Manifold from Unstable Periodic Orbits. Physical Review Letters, 2016, 117, 024101.	7.8	23
15	A KPZ Cocktail-Shaken, not Stirred Journal of Statistical Physics, 2015, 160, 794-814.	1.2	166
16	Interface fluctuations for deposition on enlarging flat substrates. New Journal of Physics, 2014, 16, 123057.	2.9	25
17	Experimental approaches to universal out-of-equilibrium scaling laws: turbulent liquid crystal and other developments. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P01006.	2.3	36
18	Collective Lyapunov modes. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 254007.	2.1	23

2

Kazumasa A Takeuchi

#	Article	IF	CITATIONS
19	Crossover from Growing to Stationary Interfaces in the Kardar-Parisi-Zhang Class. Physical Review Letters, 2013, 110, 210604.	7.8	51
20	Statistics of circular interface fluctuations in an off-lattice Eden model. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012, P05007.	2.3	35
21	Evidence for Geometry-Dependent Universal Fluctuations of the Kardar-Parisi-Zhang Interfaces in Liquid-Crystal Turbulence. Journal of Statistical Physics, 2012, 147, 853-890.	1.2	146
22	Hyperbolic decoupling of tangent space and effective dimension of dissipative systems. Physical Review E, 2011, 84, 046214.	2.1	38
23	Chaos in the Hamiltonian mean-field model. Physical Review E, 2011, 84, 066211.	2.1	26
24	Extensive and Subextensive Chaos in Globally Coupled Dynamical Systems. Physical Review Letters, 2011, 107, 124101.	7.8	33
25	Growing interfaces uncover universal fluctuations behind scale invariance. Scientific Reports, 2011, 1, 34.	3.3	214
26	Universal Fluctuations of Growing Interfaces: Evidence in Turbulent Liquid Crystals. Physical Review Letters, 2010, 104, 230601.	7.8	262
27	Experimental realization of directed percolation criticality in turbulent liquid crystals. Physical Review E, 2009, 80, 051116.	2.1	84
28	Hyperbolicity and the Effective Dimension of Spatially Extended Dissipative Systems. Physical Review Letters, 2009, 102, 074102.	7.8	67
29	Lyapunov Analysis Captures the Collective Dynamics of Large Chaotic Systems. Physical Review Letters, 2009, 103, 154103.	7.8	37
30	Scaling of hysteresis loops at phase transitions into a quasiabsorbing state. Physical Review E, 2008, 77, 030103.	2.1	10
31	Directed Percolation Criticality in Turbulent Liquid Crystals. Physical Review Letters, 2007, 99, 234503.	7.8	209
32	Role of unstable periodic orbits in phase transitions of coupled map lattices. Physical Review E, 2007, 75, 036201.	2.1	3
33	Can the Ising critical behaviour survive in non-equilibrium synchronous cellular automata?. Physica D: Nonlinear Phenomena, 2006, 223, 146-150.	2.8	5
34	Active colloid with externally induced periodic bipolar motility and its cooperative motion. Soft Matter, 0, , .	2.7	1