Svetlana Gudina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5849840/publications.pdf

Version: 2024-02-01

1307594 996975 48 258 7 15 citations g-index h-index papers 49 49 49 192 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Application of the high-pressure thermoelectric technique for characterization of semiconductor microsamples: PbX-based compounds. Journal Physics D: Applied Physics, 2004, 37, 1151-1157.	2.8	54
2	Semiconductor–metal transitions in lead chalcogenides at high pressure. Physica Status Solidi (B): Basic Research, 2003, 235, 521-525.	1.5	53
3	Electrical properties of the high-pressure phases of gallium and indium tellurides. Physics of the Solid State, 2000, 42, 1036-1040.	0.6	11
4	Temperature scaling in the quantum-Hall-effect regime in a HgTe quantum well with an inverted energy spectrum. Semiconductors, 2015, 49, 1545-1549.	0.5	11
5	Thermoelectric properties of silicon at high pressures in the region of the semiconductor-metal transition. Technical Physics Letters, 2003, 29, 598-601.	0.7	9
6	Czochralski silicon characterization by using thermoelectric power measurements at high pressure. Physica B: Condensed Matter, 2003, 340-342, 1026-1030.	2.7	8
7	Scaling in the quantum Hall effect regime in n-InGaAs/GaAs nanostructures. Journal of Experimental and Theoretical Physics, 2013, 117, 144-152.	0.9	8
8	Thermoelectric properties of Czochralski-grown silicon at high pressure up to 16ÂGPa. EPJ Applied Physics, 2004, 27, 145-148.	0.7	7
9	Determination of the magnetocaloric effect from thermophysical parameters and their relationships near magnetic phase transition in doped manganites. Journal of Magnetism and Magnetic Materials, 2020, 513, 167209.	2.3	7
10	Contributions of the electron–electron interaction and weak localization to the conductance of pâ€Geâ^•Ge1â^'xSix heterostructures. Low Temperature Physics, 2007, 33, 160-164.	0.6	6
11	Features of quantum effects in two-dimensional GaAs∕nâ€InGaAs∕GaAs structures with double quantum wells. Low Temperature Physics, 2007, 33, 156-159.	0.6	6
12	The effect of infrared radiation on quantum magnetotransport in n-InGaAs/GaAs with two strongly coupled quantum wells. Low Temperature Physics, 2013, 39, 374-377.	0.6	6
13	Quantum Hall plateau-plateau transitions inn-InGaAs/GaAs heterostructures before and after IR illumination. Low Temperature Physics, 2015, 41, 106-111.	0.6	6
14	Variable-Range Hopping Conductivity in Quantum Hall Regime for HgTe-Based Heterostructure. Journal of Low Temperature Physics, 2016, 185, 665-672.	1.4	6
15	Temperature dependence of quantum lifetime inn-InGaAs/GaAs structures with strongly coupled double quantum wells. Low Temperature Physics, 2013, 39, 43-49.	0.6	5
16	Quantum magnetotransport inn-InGaAs/GaAs structures with electron density changes caused by infrared radiation. Low Temperature Physics, 2015, 41, 221-232.	0.6	4
17	2Dâ€localization and delocalization effects in quantum Hall regime in HgTe wide quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 473-476.	0.8	4
18	Electron Effective Mass and g Factor in Wide HgTe Quantum Wells. Semiconductors, 2018, 52, 12-18.	0.5	4

#	Article	IF	CITATIONS
19	HgTe quantum wells with inverted band structure: Quantum Hall effect and the large-scale impurity potential. Low Temperature Physics, 2019, 45, 412-418.	0.6	4
20	Electrical properties of (PbS)0.59TiS2 crystals at high pressure up to 20 GPa. Physics of the Solid State, 2000, 42, 1228-1230.	0.6	3
21	Electrical properties of (PBS)0·59TiS2 crystals at high pressures up to 20GPa. High Pressure Research, 2000, 17, 347-353.	1.2	3
22	Quantum Hall effect in n-InGaAs/InAlAs metamorphic nanoheterostructures with high InAs content. Journal of Magnetism and Magnetic Materials, 2017, 440, 10-12.	2.3	3
23	Activation transport under quantum Hall regime in HgTe-based heterostructure. Low Temperature Physics, 2017, 43, 485-490.	0.6	3
24	"Extremum Loop―Model for the Valence-Band Spectrum of a HgTe/HgCdTe Quantum Well with an Inverted Band Structure in the Semimetallic Phase. Semiconductors, 2018, 52, 1403-1406.	0.5	3
25	Transport Properties of 2D-Electron Gas in a InGaAs/GaAs DQW in a Vicinity of Low Magnetic-Field-Induced Insulator-Quantum Hall Liquid Transition. AIP Conference Proceedings, 2007, , .	0.4	2
26	Temperature dependence of the bandwidth of delocalized states for <i>n</i> -InGaAs/GaAs in the quantum Hall effect regime. Low Temperature Physics, 2013, 39, 50-57.	0.6	2
27	Quantum Hall effect and hopping conductivity in n-InGaAs/InAlAs nanoheterostructures. Semiconductors, 2016, 50, 1641-1646.	0.5	2
28	Insulator-quantum Hall transition in n-InGaAs/GaAs heterostructures. Low Temperature Physics, 2017, 43, 491-494.	0.6	2
29	Nonuniversal Scaling Behavior of Conductivity Peak Widths in the Quantum Hall Effect in InGaAs/InAlAs Structures. Semiconductors, 2018, 52, 1551-1558.	0.5	2
30	On the issue of universality of critical exponents in the quantum Hall effect mode. Low Temperature Physics, 2019, 45, 181-188.	0.6	2
31	Effective Mass and g-Factor of Two-Dimentional HgTe Γ8-Band Electrons: Shubnikov-de Haas Oscillations. Semiconductors, 2020, 54, 982-990.	0.5	2
32	Rashba Spin Splitting in HgCdTe Quantum Wells with Inverted and Normal Band Structures. Nanomaterials, 2022, 12, 1238.	4.1	2
33	Transport properties of two-dimensional hole gas in a Ge1 \hat{a} 'x Si x /Ge/Ge1 \hat{a} 'x Si x quantum well in the vicinity of metal-insulator transition. Semiconductors, 2007, 41, 1315-1322.	0.5	1
34	Tunneling effects in tilted magnetic fields in n-lnGaAs/GaAs structures with strongly coupled double quantum wells. Semiconductors, 2013, 47, 1447-1451.	0.5	1
35	Evolution of the energy structure of n-InGaAs/GaAs double quantum wells in tilted magnetic fields. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 927-931.	0.6	1
36	Electron-electron interaction and the universality of critical indices for quantum Hall effect plateau-plateau transitions in n-InGaAs/GaAs nanostructures with double quantum wells. Semiconductors, 2015, 49, 181-186.	0.5	1

#	Article	IF	Citations
37	The temperature dependence of the conductivity peak values in the single and the double quantum well nanostructures n-InGaAs/GaAs after IR-illumination. Semiconductors, 2017, 51, 272-278.	0.5	1
38	Effect of exchange electron-electron interaction on conductivity of InGaAs single and double quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 113, 14-20.	2.7	1
39	Scaling laws under quantum Hall effect for a smooth disorder potential. Low Temperature Physics, 2019, 45, 176-180.	0.6	1
40	Anomalous phase shift of magneto-oscillations in HgTe quantum well with inverted energy spectrum. Journal of Magnetism and Magnetic Materials, 2021, 524, 167655.	2.3	1
41	TRANSPORT PROPERTIES OF 2D ELECTRON GAS IN AN n- InGaAs / GaAs DQW IN A VICINITY OF LOW MAGNETIC-FIELD-INDUCED HALL INSULATOR–QUANTUM HALL LIQUID TRANSITION. International Journal of Nanoscience, 2007, 06, 173-177.	0.7	O
42	Scaling in the Quantum Hall Regime for a Double Quantum Well Nanostructure in High Magnetic Field. Solid State Phenomena, 2014, 215, 208-213.	0.3	O
43	Conditions for experimental observation of the critical behavior of the longitudinal and Hall resistance in the quantum Hall regime in gallium and indium arsenide-based heterostructures. Low Temperature Physics, 2017, 43, 478-484.	0.6	O
44	Antisymmetric contribution to the magnetoresistance of heterostructures in a parallel magnetic field. Low Temperature Physics, 2017, 43, 495-498.	0.6	0
45	Quantum Hall transitions in the presence of Landau levels mixing in n-InGaAs/InAlAs structures. IOP Conference Series: Materials Science and Engineering, 2019, 475, 012029.	0.6	O
46	Quasiclassical calculations of Landau level spectrum for 20.5-nm-wide H gTe quantum well: "extremum loop―model and effects of cubic symmetry. Low Temperature Physics, 2021, 47, 7-13.	0.6	0
47	Localization and interference induced quantum effects at low magnetic fields in InGaAs/GaAs structures. Low Temperature Physics, 2021, 47, 14-18.	0.6	О
48	Quantum oscillations of magnetoresistance in HgCdTe/HgTe/HgCdTe heterostructures with inverted band spectrum. Physics of the Solid State, 0, , .	0.6	0