Qian Liu

List of Publications by Citations

Source: https://exaly.com/author-pdf/5849811/qian-liu-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

146 12,904 51 112 h-index g-index papers citations 16,866 8.9 164 7.03 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
146	Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7587-90	16.4	1859
145	Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting. <i>Advanced Materials</i> , 2016 , 28, 215-30	24	1708
144	A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12855-9	16.4	736
143	Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 957	7 ⁻¹⁶ 1 ⁴	720
142	Self-Supported FeP Nanorod Arrays: A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity. <i>ACS Catalysis</i> , 2014 , 4, 4065-4069	13.1	356
141	Mo2C Nanoparticles Decorated Graphitic Carbon Sheets: Biopolymer-Derived Solid-State Synthesis and Application as an Efficient Electrocatalyst for Hydrogen Generation. <i>ACS Catalysis</i> , 2014 , 4, 2658-26	56 ¹ 3.1	295
140	A Fe-doped Ni3S2 particle film as a high-efficiency robust oxygen evolution electrode with very high current density. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23207-23212	13	256
139	CoP Nanosheet Arrays Supported on a Ti Plate: An Efficient Cathode for Electrochemical Hydrogen Evolution. <i>Chemistry of Materials</i> , 2014 , 26, 4326-4329	9.6	255
138	Greatly Improving Electrochemical N Reduction over TiO Nanoparticles by Iron Doping. Angewandte Chemie - International Edition, 2019 , 58, 18449-18453	16.4	250
137	A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 1026-1036	2.5	224
136	High-Performance N-to-NH Conversion Electrocatalyzed by MoC Nanorod. <i>ACS Central Science</i> , 2019 , 5, 116-121	16.8	223
135	CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14634	13	205
134	High-Efficiency Electrochemical Hydrogen Evolution Catalyzed by Tungsten Phosphide Submicroparticles. <i>ACS Catalysis</i> , 2015 , 5, 145-149	13.1	200
133	Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5493-7	16.4	196
132	Self-supported NiMo hollow nanorod array: an efficient 3D bifunctional catalytic electrode for overall water splitting. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20056-20059	13	189
131	Identifying the Origin of Ti Activity toward Enhanced Electrocatalytic N Reduction over TiO Nanoparticles Modulated by Mixed-Valent Copper. <i>Advanced Materials</i> , 2020 , 32, e2000299	24	171
130	Ti3C2Tx (T = F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24031-24035	13	169

(2021-2015)

129	CoSe2 nanowires array as a 3D electrode for highly efficient electrochemical hydrogen evolution. <i>ACS Applied Materials & Distriction (Compared Materials & Distriction (Compare</i>	9.5	160
128	Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: recent advances in catalyst development and performance improvement. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1545-1556	13	158
127	Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH. <i>Small</i> , 2019 , 15, e1805103	11	153
126	A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity: FeP Nanowire Array as the Active Phase. <i>Angewandte Chemie</i> , 2014 , 126, 13069-13073	3.6	141
125	S-Doped Carbon Nanospheres: An Efficient Electrocatalyst toward Artificial N2 Fixation to NH3. Small Methods, 2019 , 3, 1800251	12.8	135
124	In Situ Growth of NiSe Nanowire Film on Nickel Foam as an Electrode for High-Performance Supercapacitors. <i>ChemElectroChem</i> , 2015 , 2, 1903-1907	4.3	132
123	3D macroporous MoS2 thin film: in situ hydrothermal preparation and application as a highly active hydrogen evolution electrocatalyst at all pH values. <i>Electrochimica Acta</i> , 2015 , 168, 133-138	6.7	128
122	Template-assisted synthesis of CoP nanotubes to efficiently catalyze hydrogen-evolving reaction. Journal of Materials Chemistry A, 2014 , 2, 14812-14816	13	125
121	Electrodeposition of nickelphosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water. <i>Journal of Power Sources</i> , 2015 , 299, 342-346	8.9	101
120	Mn O Nanocube: An Efficient Electrocatalyst Toward Artificial N Fixation to NH. <i>Small</i> , 2018 , 14, e1803	11:1:	100
120 119	Mn O Nanocube: An Efficient Electrocatalyst Toward Artificial N Fixation to NH. <i>Small</i> , 2018 , 14, e1803. A cobaltphosphorus nanoparticle decorated N-doped carbon nanosheet array for efficient and durable hydrogen evolution at alkaline pH. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 3884-3887	1 1 /1 5.8	100
	A cobaltphosphorus nanoparticle decorated N-doped carbon nanosheet array for efficient and		
119	A cobaltphosphorus nanoparticle decorated N-doped carbon nanosheet array for efficient and durable hydrogen evolution at alkaline pH. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 3884-3887 Boron-Doped TiO2 for Efficient Electrocatalytic N2 Fixation to NH3 at Ambient Conditions. <i>ACS</i>	5.8	94
119	A cobaltphosphorus nanoparticle decorated N-doped carbon nanosheet array for efficient and durable hydrogen evolution at alkaline pH. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 3884-3887 Boron-Doped TiO2 for Efficient Electrocatalytic N2 Fixation to NH3 at Ambient Conditions. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 117-122 Electrocatalytic Hydrogenation of N to NH by MnO: Experimental and Theoretical Investigations.	5.8 8.3	94
119 118 117	A cobaltphosphorus nanoparticle decorated N-doped carbon nanosheet array for efficient and durable hydrogen evolution at alkaline pH. Sustainable Energy and Fuels, 2020, 4, 3884-3887 Boron-Doped TiO2 for Efficient Electrocatalytic N2 Fixation to NH3 at Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 117-122 Electrocatalytic Hydrogenation of N to NH by MnO: Experimental and Theoretical Investigations. Advanced Science, 2019, 6, 1801182 Defect-rich fluorographene nanosheets for artificial N fixation under ambient conditions. Chemical	5.8 8.3 13.6	94 94 92
119 118 117 116	A cobaltphosphorus nanoparticle decorated N-doped carbon nanosheet array for efficient and durable hydrogen evolution at alkaline pH. Sustainable Energy and Fuels, 2020, 4, 3884-3887 Boron-Doped TiO2 for Efficient Electrocatalytic N2 Fixation to NH3 at Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 117-122 Electrocatalytic Hydrogenation of N to NH by MnO: Experimental and Theoretical Investigations. Advanced Science, 2019, 6, 1801182 Defect-rich fluorographene nanosheets for artificial N fixation under ambient conditions. Chemical Communications, 2019, 55, 4266-4269 Recent Advances in 1D Electrospun Nanocatalysts for Electrochemical Water Splitting. Small	5.8 8.3 13.6 5.8	94949287
119 118 117 116	A cobaltphosphorus nanoparticle decorated N-doped carbon nanosheet array for efficient and durable hydrogen evolution at alkaline pH. Sustainable Energy and Fuels, 2020, 4, 3884-3887 Boron-Doped TiO2 for Efficient Electrocatalytic N2 Fixation to NH3 at Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 117-122 Electrocatalytic Hydrogenation of N to NH by MnO: Experimental and Theoretical Investigations. Advanced Science, 2019, 6, 1801182 Defect-rich fluorographene nanosheets for artificial N fixation under ambient conditions. Chemical Communications, 2019, 55, 4266-4269 Recent Advances in 1D Electrospun Nanocatalysts for Electrochemical Water Splitting. Small Structures, 2021, 2, 2000048 Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano	5.8 8.3 13.6 5.8 8.7	94 94 92 87 86

111	Highly Selective Electrochemical Reduction of CO to Alcohols on an FeP Nanoarray. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 758-762	16.4	73
110	Enhancing Electrocatalytic N2 Reduction to NH3 by CeO2 Nanorod with Oxygen Vacancies. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 2889-2893	8.3	71
109	Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: Synergies of the metal center and organic linker. <i>Biosensors and Bioelectronics</i> , 2015 , 71, 1-6	11.8	70
108	Hierarchical CuO@ZnCo LDH heterostructured nanowire arrays toward enhanced water oxidation electrocatalysis. <i>Nanoscale</i> , 2020 , 12, 5359-5362	7.7	68
107	Interconnected Co-Entrapped, N-Doped Carbon Nanotube Film as Active Hydrogen Evolution Cathode over the Whole pH Range. <i>ChemSusChem</i> , 2015 , 8, 1850-5	8.3	67
106	Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions. <i>Nano Research</i> , 2019 , 12, 1093-1098	10	66
105	High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 5411-5415	7.3	63
104	Porous LaFeO3 nanofiber with oxygen vacancies as an efficient electrocatalyst for N2 conversion to NH3 under ambient conditions. <i>Journal of Energy Chemistry</i> , 2020 , 50, 402-408	12	62
103	One-step electrodeposition fabrication of graphene film-confined WS2 nanoparticles with enhanced electrochemical catalytic activity for hydrogen evolution. <i>Electrochimica Acta</i> , 2014 , 134, 8-12	6.7	61
102	A NiCo LDH nanosheet array on graphite felt: an efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. <i>Inorganic Chemistry Frontiers</i> ,	6.8	60
101	Rational design of carbon materials as anodes for potassium-ion batteries. <i>Energy Storage Materials</i> , 2021 , 34, 483-507	19.4	59
100	A hierarchical CuO@NiCo layered double hydroxide coreBhell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction. <i>Inorganic Chemistry Frontiers</i> ,	6.8	57
99	Ambient electrochemical NH synthesis from N and water enabled by ZrO nanoparticles. <i>Chemical Communications</i> , 2020 , 56, 3673-3676	5.8	54
98	Noble-metal-free electrocatalysts toward H2O2 production. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 23123-23141	13	53
97	A magnetron sputtered Mo3Si thin film: an efficient electrocatalyst for N2 reduction under ambient conditions. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 884-888	13	53
96	A Biomass-Derived Carbon-Based Electrocatalyst for Efficient N Fixation to NH under Ambient Conditions. <i>Chemistry - A European Journal</i> , 2019 , 25, 1914-1917	4.8	51
95	A-site perovskite oxides: an emerging functional material for electrocatalysis and photocatalysis. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 6650-6670	13	48
94	One-step solvothermal synthesis of MoS2/TiO2 nanocomposites with enhanced photocatalytic H2 production. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	46

93	A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. <i>Inorganic Chemistry Frontiers</i> ,	6.8	46	
92	Alkylthiol surface engineering: an effective strategy toward enhanced electrocatalytic N2-to-NH3 fixation by a CoP nanoarray. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13861-13866	13	45	
91	Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS2 nanosheets. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 6117-6122	13	45	
90	Commercial indium-tin oxide glass: A catalyst electrode for efficient N2 reduction at ambient conditions. <i>Chinese Journal of Catalysis</i> , 2021 , 42, 1024-1029	11.3	44	
89	Sn dendrites for electrocatalytic N2 reduction to NH3 under ambient conditions. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 4469-4472	5.8	43	
88	Electrocatalytic N2 Fixation over Hollow VO2 Microspheres at Ambient Conditions. <i>ChemElectroChem</i> , 2019 , 6, 1014-1018	4.3	43	
87	Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. <i>Current Opinion in Electrochemistry</i> , 2021 , 29, 100766	7.2	43	
86	PH-driven dissolutionprecipitation: a novel route toward ultrathin Ni(OH)2 nanosheets array on nickel foam as binder-free anode for Li-ion batteries with ultrahigh capacity. <i>CrystEngComm</i> , 2013 , 15, 8300	3.3	42	
85	High-Performance Electrochemical NO Reduction into NH by MoS Nanosheet. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25263-25268	16.4	42	
84	Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. <i>Green Chemistry</i> , 2021 , 23, 2834-2867	10	40	
83	Constructing a hollow microflower-like ZnS/CuS@C heterojunction as an effective ion-transport booster for an ultrastable and high-rate sodium storage anode. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 6402-6412	13	39	
82	Photoelectrochemical Synthesis of Ammonia with Black Phosphorus. <i>Advanced Functional Materials</i> , 2020 , 30, 2002731	15.6	38	
81	CuO@CoFe Layered Double Hydroxide Core-Shell Heterostructure as an Efficient Water Oxidation Electrocatalyst under Mild Alkaline Conditions. <i>Inorganic Chemistry</i> , 2020 , 59, 9491-9495	5.1	37	
80	TiB2 thin film enabled efficient NH3 electrosynthesis at ambient conditions. <i>Materials Today Physics</i> , 2021 , 18, 100396	8	37	
79	NiFe Layered-Double-Hydroxide Nanosheet Arrays on Graphite Felt: A 3D Electrocatalyst for Highly Efficient Water Oxidation in Alkaline Media. <i>Inorganic Chemistry</i> , 2021 , 60, 12703-12708	5.1	36	
78	Ambient electrochemical N2-to-NH3 fixation enabled by Nb2O5 nanowire array. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 423-427	6.8	33	
77	Recent Advances in Nonprecious Metal Oxide Electrocatalysts and Photocatalysts for N2 Reduction Reaction under Ambient Condition. <i>Small Science</i> , 2021 , 1, 2000069		33	
76	CuS concave polyhedral superstructures enabled efficient N2 electroreduction to NH3 at ambient conditions. <i>Inorganic Chemistry Frontiers</i> ,	6.8	32	

75	TiO Nanoparticles with Ti Sites toward Efficient NH Electrosynthesis under Ambient Conditions. <i>ACS Applied Materials & District Materi</i>	9.5	32
74	Greatly Improving Electrochemical N2 Reduction over TiO2 Nanoparticles by Iron Doping. <i>Angewandte Chemie</i> , 2019 , 131, 18620-18624	3.6	31
73	La2O3 nanoplate: An efficient electrocatalyst for artificial N2 fixation to NH3 with excellent selectivity at ambient condition. <i>Electrochimica Acta</i> , 2019 , 298, 106-111	6.7	31
72	Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. <i>Nano Research</i> ,1	10	30
71	Ti self-doped TiO nanowires for efficient electrocatalytic N reduction to NH. <i>Chemical Communications</i> , 2020 , 56, 1074-1077	5.8	29
70	Recent advances in perovskite oxides as electrode materials for supercapacitors. <i>Chemical Communications</i> , 2021 , 57, 2343-2355	5.8	29
69	Cobalt Phosphide Nanowires: Efficient Nanostructures for Fluorescence Sensing of Biomolecules and Photocatalytic Evolution of Dihydrogen from Water under Visible Light. <i>Angewandte Chemie</i> , 2015 , 127, 5583-5587	3.6	28
68	N-doped carbon-coated tungsten oxynitride nanowire arrays for highly efficient electrochemical hydrogen evolution. <i>ChemSusChem</i> , 2015 , 8, 2487-91	8.3	28
67	Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11879-11907	13	28
66	Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. <i>Nano Research</i> ,1	10	28
65	Ambient Ammonia Synthesis via Electrochemical Reduction of Nitrate Enabled by NiCo O Nanowire Array <i>Small</i> , 2022 , e2106961	11	27
64	Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. <i>Electrochemistry Communications</i> , 2021 , 122, 106881	5.1	25
63	High-efficiency electrochemical nitrite reduction to ammonium using a Cu3P nanowire array under ambient conditions. <i>Green Chemistry</i> , 2021 , 23, 5487-5493	10	25
62	CoFe-LDH nanowire arrays on graphite felt: A high-performance oxygen evolution electrocatalyst in alkaline media. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	24
61	2021 Roadmap: electrocatalysts for green catalytic processes. <i>JPhys Materials</i> , 2021 , 4, 022004	4.2	24
60	Enhanced Electrochemical HO Production via Two-Electron Oxygen Reduction Enabled by Surface-Derived Amorphous Oxygen-Deficient TiO. <i>ACS Applied Materials & Description</i> 13, 33182-33187	9.5	24
59	In situ tailoring bimetallicBrganic framework-derived yolkBhell NiS2/CuS hollow microspheres: an extraordinary kinetically pseudocapacitive nanoreactor for an effective sodium-ion storage anode. <i>Journal of Materials Chemistry A</i> ,	13	24
58	Superior hydrogen evolution electrocatalysis enabled by CoP nanowire array on graphite felt. International Journal of Hydrogen Energy, 2022 , 47, 3580-3586	6.7	22

57	A new nonlinear optical crystal: Bi2O2(OH)(NO3). Crystal Research and Technology, 2011, 46, 655-658	1.3	21
56	Recent Progress in Metal-Free Electrocatalysts toward Ambient N2 Reduction Reaction. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2020 , 2009043-0	3.8	20
55	Unusual electrochemical N reduction activity in an earth-abundant iron catalyst via phosphorous modulation. <i>Chemical Communications</i> , 2020 , 56, 731-734	5.8	19
54	N-doped carbon nanotubes supported CoSe nanoparticles: A highly efficient and stable catalyst for HO electrosynthesis in acidic media. <i>Nano Research</i> , 2021 , 15, 1-6	10	19
53	High-efficiency nitrate electroreduction to ammonia on electrodeposited cobalt-phosphorus alloy film. <i>Chemical Communications</i> , 2021 , 57, 9720-9723	5.8	19
52	An amorphous WC thin film enabled high-efficiency N reduction electrocatalysis under ambient conditions. <i>Chemical Communications</i> , 2021 , 57, 7806-7809	5.8	19
51	Ni nanoparticles-graphene hybrid film: one-step electrodeposition preparation and application as highly efficient oxygen evolution reaction electrocatalyst. <i>Journal of Applied Electrochemistry</i> , 2014 , 44, 1165-1170	2.6	18
50	Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage. <i>Nano Research</i> , 2022 , 15, 186	10	18
49	Modulating Oxygen Vacancies of TiO2 Nanospheres by Mn-Doping to Boost Electrocatalytic N2 Reduction. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 1512-1517	8.3	18
48	In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. <i>Nano Research</i> ,1	10	17
47	Plasma-induced defective TiO2-x with oxygen vacancies: A high-active and robust bifunctional catalyst toward H2O2 electrosynthesis. <i>Chem Catalysis</i> , 2021 ,		17
46	NiP nanosheet array for high-efficiency electrohydrogenation of nitrite to ammonia at ambient conditions. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 1055-1063	9.3	17
45	High-performance NH production NO electroreduction over a NiO nanosheet array. <i>Chemical Communications</i> , 2021 ,	5.8	14
44	Greatly Facilitated Two-Electron Electroreduction of Oxygen into Hydrogen Peroxide over TiO by Mn Doping. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 46659-46664	9.5	14
43	La-doped TiO2 nanorods toward boosted electrocatalytic N2-to-NH3 conversion at ambient conditions. <i>Chinese Journal of Catalysis</i> , 2021 , 42, 1755-1762	11.3	14
42	Electrochemical nitrogen reduction: recent progress and prospects. <i>Chemical Communications</i> , 2021 , 57, 7335-7349	5.8	13
41	Amorphous Boron Carbide on Titanium Dioxide Nanobelt Arrays for High-Efficiency Electrocatalytic NO Reduction to NH3 <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	13
40	Bi nanodendrites for highly efficient electrocatalytic NO reduction to NH3 at ambient conditions. <i>Materials Today Physics</i> , 2022 , 22, 100611	8	12

39	A MnS/FeS2 heterostructure with a high degree of lattice matching anchored into carbon skeleton for ultra-stable sodium-ion storage. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 24024-24035	13	12
38	Honeycomb Carbon Nanofibers: A Superhydrophilic O2-Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Two-Electron Oxygen Reduction Reaction. <i>Angewandte Chemie</i> , 2021 , 133, 10677-10681	3.6	12
37	High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. <i>Materials Today Physics</i> , 2022 , 23, 100619	8	11
36	Co-MOF Nanosheet Arrays for Efficient Alkaline Oxygen Evolution Electrocatalysis. <i>ChemNanoMat</i> , 2021 , 7, 906-909	3.5	11
35	2D Vanadium Carbide (MXene) for Electrochemical Synthesis of Ammonia Under Ambient Conditions. <i>Catalysis Letters</i> , 2021 , 151, 3516	2.8	10
34	High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. <i>Chemical Engineering Journal</i> , 2022 , 435, 135104	14.7	9
33	Functional integration of hierarchical coreBhell architectures via vertically arrayed ultrathin CuSe nanosheets decorated on hollow CuS microcages targeting highly effective sodium-ion storage. Journal of Materials Chemistry A, 2021, 9, 27615-27628	13	9
32	One-dimensional conductive metalBrganic framework nanorods: a highly selective electrocatalyst for the oxygen reduction to hydrogen peroxide. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 20345-20349	13	9
31	CoTe nanoparticle-embedded N-doped hollow carbon polyhedron: an efficient catalyst for H2O2 electrosynthesis in acidic media. <i>Journal of Materials Chemistry A</i> ,	13	9
30	Self-supported NiS@NiP/MoS heterostructures on nickel foam for an outstanding oxygen evolution reaction and efficient overall water splitting. <i>Dalton Transactions</i> , 2021 , 50, 15094-15102	4.3	9
29	Reduced graphene oxide supported ZIF-67 derived CoP enables high-performance potassium ion storage. <i>Journal of Colloid and Interface Science</i> , 2021 , 604, 319-326	9.3	9
28	Ambient electrochemical N2-to-NH3 conversion catalyzed by TiO2 decorated juncus effusus-derived carbon microtubes. <i>Inorganic Chemistry Frontiers</i> , 2022 , 9, 1514-1519	6.8	9
27	High-Performance Electrochemical NO Reduction into NH3 by MoS2 Nanosheet. <i>Angewandte Chemie</i> ,	3.6	8
26	Oxidation-etching induced morphology regulation of Cu catalysts for high-performance electrochemical N2 reduction. <i>EcoMat</i> , 2020 , 2, e12026	9.4	7
25	Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. <i>Inorganic Chemistry Frontiers</i> ,	6.8	7
24	Electrochemical two-electron O2 reduction reaction toward H2O2 production: using cobalt porphyrin decorated carbon nanotubes as a nanohybrid catalyst. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 26019-26027	13	7
23	Directionally Tailoring Macroporous Honeycomb-Like Structured Carbon Nanofibers toward High-Capacitive Potassium Storage. <i>ACS Applied Materials & Discrete Amplied & Discrete Amplied Materia</i>	9.5	7
22	Hexagonal boron nitride nanosheet as an effective nanoquencher for the fluorescence detection of microRNA. <i>Chemical Communications</i> , 2021 , 57, 8039-8042	5.8	7

21	Conductive Two-Dimensional Magnesium Metal Drganic Frameworks for High-Efficiency O2 Electroreduction to H2O2. <i>ACS Catalysis</i> ,6092-6099	13.1	7	
20	Biomass Juncus derived carbon decorated with cobalt nanoparticles enables high-efficiency ammonia electrosynthesis by nitrite reduction. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 2842-2848	13	6	
19	A Cr-FeOOH@Ni-P/NF binder-free electrode as an excellent oxygen evolution reaction electrocatalyst. <i>Nanoscale</i> , 2021 , 13, 17003-17010	7.7	6	
18	Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. <i>Nano Research</i> ,1	10	6	
17	Boosting electrochemical nitrite-ammonia conversion properties by a Cu foam@CuO catalyst <i>Chemical Communications</i> , 2021 ,	5.8	5	
16	Iron-doped cobalt oxide nanoarray for efficient electrocatalytic nitrate-to-ammonia conversion Journal of Colloid and Interface Science, 2022, 615, 636-642	9.3	5	
15	Polyrrole-encapsulated Cu2Se nanosheets in situ grown on Cu mesh for high stability sodium-ion battery anode. <i>Chemical Engineering Journal</i> , 2022 , 433, 134477	14.7	5	
14	Recent advances in MoS-based materials for electrocatalysis Chemical Communications, 2022,	5.8	4	
13	A TiO nanobelt array with oxygen vacancies: an efficient electrocatalyst toward nitrite conversion to ammonia <i>Chemical Communications</i> , 2022 ,	5.8	4	
12	Coupling denitrification and ammonia synthesis via selective electrochemical reduction of nitric oxide over Fe2O3 nanorods. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 6454-6462	13	4	
11	FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. <i>Nano Research</i> ,1	10	4	
10	Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis. <i>Journal of Colloid and Interface Science</i> , 2022 ,	9.3	4	
9	Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2. <i>Nano Research</i> ,1	10	3	
8	Ag@TiO2 as an Efficient Electrocatalyst for N2 Fixation to NH3 under Ambient Conditions. <i>ChemistrySelect</i> , 2021 , 6, 5271-5274	1.8	3	
7	In Situ Derived Bi Nanoparticles Confined in Carbon Rods as an Efficient Electrocatalyst for Ambient N Reduction to NH. <i>Inorganic Chemistry</i> , 2021 , 60, 7584-7589	5.1	2	
6	Monodisperse Cu Cluster-Loaded Defective ZrO Nanofibers for Ambient N Fixation to NH. <i>ACS Applied Materials & Applied & Appli</i>	9.5	2	
5	High-efficiency NO electroreduction to NH over honeycomb carbon nanofiber at ambient conditions <i>Journal of Colloid and Interface Science</i> , 2022 , 616, 261-267	9.3	2	
4	Cu nanoparticles decorated juncus-derived carbon for efficient electrocatalytic nitrite-to-ammonia conversion. <i>Journal of Colloid and Interface Science</i> , 2022 , 624, 394-399	9.3	2	

3	Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. <i>Materials Advances</i> ,	3.3	1	
2	Electrocatalytic H2O2 production via two-electron O2 reduction by Mo-doped TiO2 nanocrystallines. <i>Catalysis Science and Technology</i> , 2021 , 11, 6970-6974	5.5	1	
1	Co-NCNT nanohybrid as a highly active catalyst for the electroreduction of nitrate to ammonia Chemical Communications, 2022 ,	5.8	1	