
Giulia Marsili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5849595/publications.pdf Version: 2024-02-01

ΟΠΠΑ ΜΑΡΟΠΙ

#	Article	IF	CITATIONS
1	Lack of Evidence of Chikungunya Virus Infection among Blood Donors during the Chikungunya Outbreak in Lazio Region, Italy, 2017. Viruses, 2022, 14, 619.	1.5	2
2	Dengue and Chikungunya virus circulation in Cameroon and Gabon: molecular evidence among symptomatic individuals. Access Microbiology, 2022, 4, .	0.2	1
3	Multiplex Real-Time Reverse-Transcription Polymerase Chain Reaction Assays for Diagnostic Testing of Severe Acute Respiratory Syndrome Coronavirus 2 and Seasonal Influenza Viruses: A Challenge of the Phase 3 Pandemic Setting. Journal of Infectious Diseases, 2021, 223, 765-774.	1.9	22
4	The common European mosquitoes Culex pipiens and Aedes albopictus are unable to transmit SARS-CoV-2 after a natural-mimicking challenge with infected blood. Parasites and Vectors, 2021, 14, 76.	1.0	14
5	lκB kinase-ε-mediated phosphorylation triggers IRF-1 degradation in breast cancer cells. Neoplasia, 2020, 22, 459-469.	2.3	8
6	Laboratory management for SARS-CoV-2 detection: a user-friendly combination of the heat treatment approach and rt-Real-time PCR testing. Emerging Microbes and Infections, 2020, 9, 1393-1396.	3.0	39
7	Alternate NF-κB-Independent Signaling Reactivation of Latent HIV-1 Provirus. Journal of Virology, 2019, 93, .	1.5	20
8	Secondary Autochthonous Outbreak of Chikungunya, Southern Italy, 2017. Emerging Infectious Diseases, 2019, 25, 2093-2095.	2.0	20
9	A model of the three-dimensional structure of human interferon responsive factor 1 and its modifications upon phosphorylation or phosphorylation-mimicking mutations. Journal of Biomolecular Structure and Dynamics, 2019, 37, 4632-4643.	2.0	0
10	The Italian 2017 Outbreak Chikungunya Virus Belongs to an Emerging Aedes albopictus–Adapted Virus Cluster Introduced From the Indian Subcontinent. Open Forum Infectious Diseases, 2019, 6, ofy321.	0.4	39
11	IFN Regulatory Factors and Antiviral Innate Immunity: How Viruses Can Get Better. Journal of Interferon and Cytokine Research, 2016, 36, 414-432.	0.5	18
12	HIV-1 Tat Recruits HDM2 E3 Ligase To Target IRF-1 for Ubiquitination and Proteasomal Degradation. MBio, 2016, 7, .	1.8	19
13	Type I IFN – A blunt spear in fighting HIV-1 infection. Cytokine and Growth Factor Reviews, 2015, 26, 143-158.	3.2	22
14	lκB Kinase ε Targets Interferon Regulatory Factor 1 in Activated T Lymphocytes. Molecular and Cellular Biology, 2014, 34, 1054-1065.	1.1	33
15	IRF-7: an antiviral factor and beyond. Future Virology, 2013, 8, 1007-1020.	0.9	3
16	HIV-1, interferon and the interferon regulatory factor system: An interplay between induction, antiviral responses and viral evasion. Cytokine and Growth Factor Reviews, 2012, 23, 255-270.	3.2	38
17	The development of immune-modulating compounds to disrupt HIV latency. Cytokine and Growth Factor Reviews, 2012, 23, 159-172.	3.2	17
18	CSO3-5. IRF-1 phosphorylation by I-kappa-B kinase epsilon impairs IFN beta stimulation in activated CD4+ T cells Cytokine, 2011, 56, 9.	1.4	0

GIULIA MARSILI

#	Article	IF	CITATIONS
19	The design of optimal therapeutic small interfering RNA molecules targeting diverse strains of influenza A virus. Bioinformatics, 2011, 27, 3364-3370.	1.8	18
20	HIV-1 targeting of IFN regulatory factors. Future Virology, 2011, 6, 1397-1405.	0.9	7
21	Interferon regulatory factorâ€∎ acts as a powerful adjuvant in <i>tat</i> DNA based vaccination. Journal of Cellular Physiology, 2010, 224, 702-709.	2.0	27
22	Expression of IFNγR2 mutated in a dileucine internalization motif reinstates IFNγ signaling and apoptosis in human T lymphocytes. Immunology Letters, 2010, 134, 17-25.	1.1	12
23	190 IRF-1 is required for full NF-Î⁰B transcriptional activity at the HIV-1 LTR enhancer. Cytokine, 2008, 43, 284.	1.4	0
24	IRF-1 Is Required for Full NF-κB Transcriptional Activity at the Human Immunodeficiency Virus Type 1 Long Terminal Repeat Enhancer. Journal of Virology, 2008, 82, 3632-3641.	1.5	83
25	Repression of Interferon Regulatory Factor 1 by Hepatitis C Virus Core Protein Results in Inhibition of Antiviral and Immunomodulatory Genes. Journal of Virology, 2007, 81, 202-214.	1.5	53
26	IRF-7: New Role in the Regulation of Genes Involved in Adaptive Immunity. Annals of the New York Academy of Sciences, 2007, 1095, 325-333.	1.8	24
27	Intracellular HIV-1 Tat protein represses constitutive LMP2 transcription increasing proteasome activity by interfering with the binding of IRF-1 to STAT1. Biochemical Journal, 2006, 396, 371-380.	1.7	50
28	Analysis of the Signal Transduction Pathway Leading to Human Immunodeficiency Virus-1-Induced Interferon Regulatory Factor-1 Upregulation. Annals of the New York Academy of Sciences, 2004, 1030, 187-195.	1.8	11
29	Role of Acetylases and Deacetylase Inhibitors in IRF-1-Mediated HIV-1 Long Terminal Repeat Transcription. Annals of the New York Academy of Sciences, 2004, 1030, 636-643.	1.8	31
30	On the Role of Interferon Regulatory Factors in HIV-1 Replication. Annals of the New York Academy of Sciences, 2003, 1010, 29-42.	1.8	16
31	Review: IRF Regulation of HIV-1 Long Terminal Repeat Activity. Journal of Interferon and Cytokine Research, 2002, 22, 27-37.	0.5	43
32	Modulation of Human Immunodeficiency Virus 1 Replication by Interferon Regulatory Factors. Journal of Experimental Medicine, 2002, 195, 1359-1370.	4.2	102
33	DNA sequence heterogeneity within the Epstein–Barr virus family of repeats in the latent origin of replication. Gene, 2001, 265, 165-173.	1.0	14