Philip E Stewart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5849583/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Outer-surface protein C of the Lyme disease spirochete: A protein induced in ticks for infection of mammals. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3142-3147.	3.3	373
2	Clonal Polymorphism of Borrelia burgdorferi Strain B31 MI: Implications for Mutagenesis in an Infectious Strain Background. Infection and Immunity, 2002, 70, 2139-2150.	1.0	313
3	Borrelia burgdorferi OspC Protein Required Exclusively in a Crucial Early Stage of Mammalian Infection. Infection and Immunity, 2006, 74, 3554-3564.	1.0	285
4	Borrelia burgdorferi Â54 is required for mammalian infection and vector transmission but not for tick colonization. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5162-5167.	3.3	204
5	Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Molecular Microbiology, 2001, 39, 714-721.	1.2	190
6	The burgeoning molecular genetics of the Lyme disease spirochaete. Nature Reviews Microbiology, 2005, 3, 129-143.	13.6	183
7	Biology of Infection with Borrelia burgdorferi. Infectious Disease Clinics of North America, 2008, 22, 217-234.	1.9	161
8	New Antibiotic Resistance Cassettes Suitable for Genetic Studies in <i>Borrelia burgdorferi</i> . Journal of Molecular Microbiology and Biotechnology, 2003, 6, 29-40.	1.0	142
9	Delineating the Requirement for the Borrelia burgdorferi Virulence Factor OspC in the Mammalian Host. Infection and Immunity, 2006, 74, 3547-3553.	1.0	108
10	Experimental Assessment of the Roles of Linear Plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the Infectious Cycle. Infection and Immunity, 2004, 72, 5938-5946.	1.0	102
11	The plasmids of Borrelia burgdorferi: essential genetic elements of a pathogen. Plasmid, 2005, 53, 1-13.	0.4	90
12	The Essential Nature of the Ubiquitous 26-Kilobase Circular Replicon of Borrelia burgdorferi. Journal of Bacteriology, 2004, 186, 3561-3569.	1.0	88
13	Genome-Wide Transposon Mutagenesis of Borrelia burgdorferi for Identification of Phenotypic Mutants. Applied and Environmental Microbiology, 2004, 70, 5973-5979.	1.4	82
14	Motility Is Crucial for the Infectious Life Cycle of Borrelia burgdorferi. Infection and Immunity, 2013, 81, 2012-2021.	1.0	70
15	Altered Stationary-Phase Response in aBorrelia burgdorferi rpoS Mutant. Journal of Bacteriology, 2000, 182, 2909-2918.	1.0	67
16	Glycerol-3-Phosphate Acquisition in Spirochetes: Distribution and Biological Activity of Glycerophosphodiester Phosphodiesterase (GlpQ) among Borrelia Species. Journal of Bacteriology, 2003, 185, 1346-1356.	1.0	65
17	An enhanced GFP reporter system to monitor gene expression in Borrelia burgdorferi. Microbiology (United Kingdom), 2003, 149, 1819-1828.	0.7	63
18	A Tightly Regulated Surface Protein of Borrelia burgdorferi Is Not Essential to the Mouse-Tick Infectious Cycle. Infection and Immunity, 2008, 76, 1970-1978.	1.0	48

PHILIP E STEWART

#	Article	IF	CITATIONS
19	Conservation of Plasmid Maintenance Functions between Linear and Circular Plasmids in Borrelia burgdorferi. Journal of Bacteriology, 2003, 185, 3202-3209.	1.0	47
20	Identification of Potential Virulence Determinants by Himar1 Transposition of Infectious Borrelia burgdorferi B31. Infection and Immunity, 2006, 74, 6690-6699.	1.0	44
21	Cross-Species Surface Display of Functional Spirochetal Lipoproteins by Recombinant Borrelia burgdorferi. Infection and Immunity, 2004, 72, 1463-1469.	1.0	37
22	Use of the Cre- <i>lox</i> Recombination System To Investigate the lp54 Gene Requirement in the Infectious Cycle of <i>Borrelia burgdorferi</i> . Infection and Immunity, 2010, 78, 2397-2407.	1.0	27
23	Function of the Borrelia burgdorferi FtsH Homolog Is Essential for Viability both <i>In Vitro</i> and <i>In Vivo</i> and Independent of HflK/C. MBio, 2016, 7, e00404-16.	1.8	26
24	A widely conserved bacterial cytoskeletal component influences unique helical shape and motility of the spirochete <i>Leptospira biflexa</i> . Molecular Microbiology, 2018, 108, 77-89.	1.2	24
25	Sharing the Ride: Ixodes scapularis Symbionts and Their Interactions. Frontiers in Cellular and Infection Microbiology, 2020, 10, 142.	1.8	23
26	Borrelia burgdorferi Linear Plasmid 38 Is Dispensable for Completion of the Mouse-Tick Infectious Cycle. Infection and Immunity, 2011, 79, 3510-3517.	1.0	21
27	Transposon Mutagenesis of the Lyme Disease Agent Borrelia burgdorferi. , 2008, 431, 85-95.		21
28	Borrelia burgdorferi SpoVG DNA- and RNA-Binding Protein Modulates the Physiology of the Lyme Disease Spirochete. Journal of Bacteriology, 2018, 200, .	1.0	20
29	Dissociation of Infectivity and Pathogenicity inBorrelia burgdorferi. Infection and Immunity, 2001, 69, 3507-3509.	1.0	19
30	Development of a Transposon Mutagenesis System in the Oral Spirochete <i>Treponema denticola</i> . Applied and Environmental Microbiology, 2008, 74, 6461-6464.	1.4	19
31	Physiologic and Genetic Factors Influencing the Zoonotic Cycle of Borrelia burgdorferi. Current Topics in Microbiology and Immunology, 2017, 415, 63-82.	0.7	17
32	Multiple Posttranslational Modifications of Leptospira biflexa Proteins as Revealed by Proteomic Analysis. Applied and Environmental Microbiology, 2016, 82, 1183-1195.	1.4	16
33	Characterization of the Bat proteins in the oxidative stress response of Leptospira biflexa. BMC Microbiology, 2012, 12, 290.	1.3	14
34	Microbiomes of Blood-Feeding Arthropods: Genes Coding for Essential Nutrients and Relation to Vector Fitness and Pathogenic Infections. A Review. Microorganisms, 2021, 9, 2433.	1.6	14
35	<i>Borrelia burgdorferi</i> Resistance to a Major Skin Antimicrobial Peptide Is Independent of Outer Surface Lipoprotein Content. Antimicrobial Agents and Chemotherapy, 2009, 53, 4490-4494.	1.4	11
36	The Lyme disease spirochete's BpuR DNA/RNAâ€binding protein is differentially expressed during the mammal–tick infectious cycle, which affects translation of the SodA superoxide dismutase. Molecular Microbiology, 2019, 112, 973-991.	1.2	11

#	Article	IF	CITATIONS
37	Visualization of Spirochetes by Labeling Membrane Proteins With Fluorescent Biarsenical Dyes. Frontiers in Cellular and Infection Microbiology, 2019, 9, 287.	1.8	6
38	Linear Plasmids in Bacteria: Common Origins, Uncommon Ends. , 0, , 291-301.		5
39	Probing the Role of <i>bba30,</i> a Highly Conserved Gene of the Lyme Disease Spirochete, Throughout the Mouse-Tick Infectious Cycle. Infection and Immunity, 2021, 89, e0033321.	1.0	1