
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5849490/publications.pdf

Version: 2024-02-01

363

336

5.4

0.9

#	Article	IF	CITATIONS
1	Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478, 49-56.	13.7	4,243
2	Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review. European Journal of Soil Science, 2006, 57, 426-445.	1.8	2,144
3	The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 2002, 34, 139-162.	4.2	1,488
4	Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and Soil, 2011, 338, 143-158.	1.8	1,239
5	SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry, 2007, 39, 2183-2207.	4.2	1,130
6	Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 2019, 333, 149-162.	2.3	944
7	Biogeochemistry of paddy soils. Geoderma, 2010, 157, 1-14.	2.3	912
8	Organoâ€mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 2008, 171, 61-82.	1.1	892
9	The molecularly-uncharacterized component of nonliving organic matter in natural environments. Organic Geochemistry, 2000, 31, 945-958.	0.9	618
10	Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 2018, 181, 104-136.	1.1	567
11	The concept and future prospects of soil health. Nature Reviews Earth & Environment, 2020, 1, 544-553.	12.2	486
12	Temperature sensitivity of soil organic matter decomposition—what do we know?. Biology and Fertility of Soils, 2009, 46, 1-15.	2.3	404
13	13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma, 1997, 80, 243-270.	2.3	403
14	Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R.) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf
15	Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model. Journal of Plant Nutrition and Soil Science, 2008, 171, 111-124.	1.1	367

Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 2020, 13, 529-534.

Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Organic Geochemistry, 2003, 34, 1591-1600.

Analytical approaches for characterizing soil organic matter. Organic Geochemistry, 2000, 31, 609-625.

16

18

#	Article	IF	CITATIONS
19	Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant and Soil, 2011, 340, 7-24.	1.8	335
20	Improvement of 13 C and 15 N CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10% hydrofluoric acid. European Journal of Soil Science, 1997, 48, 319-328.	1.8	333
21	Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biology and Biochemistry, 2003, 35, 101-118.	4.2	327
22	Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Organic Geochemistry, 2002, 33, 1131-1142.	0.9	316
23	Soil organic matter fractions as early indicators for carbon stock changes under different land-use?. Geoderma, 2005, 124, 143-155.	2.3	304
24	Charred organic carbon in German chernozemic soils. European Journal of Soil Science, 1999, 50, 351-365.	1.8	293
25	Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nature Communications, 2014, 5, 2947.	5.8	288
26	Characterization of Ferrihydrite-Soil Organic Matter Coprecipitates by X-ray Diffraction and Mössbauer Spectroscopy. Environmental Science & Technology, 2008, 42, 7891-7897.	4.6	268
27	Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences, 2013, 10, 1675-1691.	1.3	252
28	Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Global Change Biology, 2012, 18, 2233-2245.	4.2	242
29	Estimation and decomposition pattern of the lignin component in forest humus layers. Soil Biology and Biochemistry, 1986, 18, 589-594.	4.2	234
30	Stabilization of organic matter by soil minerals — investigations of density and particle-size fractions from two acid forest soils. Journal of Plant Nutrition and Soil Science, 2002, 165, 451.	1.1	220
31	Fractionation of Organic Matter Due to Reaction with Ferrihydrite: Coprecipitation versus Adsorption. Environmental Science & Technology, 2011, 45, 527-533.	4.6	217
32	Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biology and Biochemistry, 2009, 41, 256-261.	4.2	215
33	Soil C and N stocks as affected by cropping systems and nitrogen fertilisation in a southern Brazil Acrisol managed under no-tillage for 17 years. Soil and Tillage Research, 2005, 81, 87-95.	2.6	214
34	Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biology and Biochemistry, 2018, 122, 19-30.	4.2	202
35	Evaluation of an ultrasonic dispersion procedure to isolate primary organomineral complexes from soils. European Journal of Soil Science, 1999, 50, 87-94.	1.8	199
36	The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences, 2013, 10, 3983-3996.	1.3	189

#	Article	IF	CITATIONS
37	The effect of 10% HF treatment on the resolution of CPMAS 13C NMR spectra and on the quality of organic matter in Ferralsols. Geoderma, 2003, 116, 373-392.	2.3	177
38	The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: Fourteen years on. Soil Biology and Biochemistry, 2017, 105, A3-A8.	4.2	175
39	Carbon and nitrogen stocks in physical fractions of a subtropical Acrisol as influenced by long-term no-till cropping systems and N fertilisation. Plant and Soil, 2005, 268, 319-328.	1.8	172
40	Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils. Soil Biology and Biochemistry, 2004, 36, 177-190.	4.2	171
41	Content and composition of free and occluded particulate organic matter in a differently textured arable Cambisol as revealed by solid-state13C NMR spectroscopy. Journal of Plant Nutrition and Soil Science, 2004, 167, 45-53.	1.1	170
42	Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation. Global Change Biology, 2014, 20, 653-665.	4.2	170
43	Tree girdling provides insight on the role of labile carbon in nitrogen partitioning between soil microorganisms and adult European beech. Soil Biology and Biochemistry, 2009, 41, 1622-1631.	4.2	167
44	Stabilization of soil organic matter isolated via oxidative degradation. Organic Geochemistry, 2005, 36, 1567-1575.	0.9	162
45	Chemical composition of the organic matter in forest soils: The humus layer. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1988, 151, 331-340.	0.4	148
46	Soil organic matter stabilization in acidic forest soils is preferential and soil typeâ€specific. European Journal of Soil Science, 2008, 59, 674-692.	1.8	145
47	Biogeochemical interfaces in soil: The interdisciplinary challenge for soil science. Journal of Plant Nutrition and Soil Science, 2010, 173, 88-99.	1.1	143
48	Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria). Agriculture, Ecosystems and Environment, 2013, 176, 39-52.	2.5	143
49	Alteration of soil organic matter following treatment with hydrofluoric acid (HF). Organic Geochemistry, 2006, 37, 1437-1451.	0.9	139
50	Characterization of lignin in forest humus layers by high-performance liquid chromatography of cupric oxide oxidation products. Soil Biology and Biochemistry, 1985, 17, 637-640.	4.2	138
51	An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology. Journal of Plant Nutrition and Soil Science, 2008, 171, 5-13.	1.1	129
52	Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter. Biogeochemistry, 2017, 132, 307-324.	1.7	129
53	Root Exudates Induce Soil Macroaggregation Facilitated by Fungi in Subsoil. Frontiers in Environmental Science, 2018, 6, .	1.5	128
54	Girdling Affects Ectomycorrhizal Fungal (EMF) Diversity and Reveals Functional Differences in EMF Community Composition in a Beech Forest. Applied and Environmental Microbiology, 2010, 76, 1831-1841.	1.4	126

#	Article	IF	CITATIONS
55	Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores. European Journal of Soil Science, 2005, 56, 050912034650049.	1.8	125
56	Aliphatic components of forest soil organic matter as determined by solid-state 13C NMR and analytical pyrolysis. Science of the Total Environment, 1992, 113, 89-106.	3.9	124
57	Occurrence, distribution and fate of the lipid plant biopolymers cutin and suberin in temperate forest soils. Organic Geochemistry, 1993, 20, 1063-1076.	0.9	120
58	Ancient paddy soils from the Neolithic age in China's Yangtze River Delta. Die Naturwissenschaften, 2006, 93, 232-236.	0.6	120
59	Chemical Structural Studies of Forest Soil Humic Acids: Aromatic Carbon Fraction. Soil Science Society of America Journal, 1991, 55, 241-247.	1.2	118
60	Refractory organic carbon in particle-size fractions of arable soils II: organic carbon in relation to mineral surface area and iron oxides in fractions <6 î¼m. Organic Geochemistry, 2002, 33, 1699-1713.	0.9	116
61	Nature and distribution of alkyl carbon in forest soil profiles: implications for the origin and humification of aliphatic biomacromolecules. Science of the Total Environment, 1992, 117-118, 175-185.	3.9	114
62	A systemic approach for modeling soil functions. Soil, 2018, 4, 83-92.	2.2	113
63	Dissolved Organic Matterâ€Enhanced Retention of Polycyclic Aromatic Hydrocarbons in Soil Miscible Displacement Experiments. Journal of Environmental Quality, 1997, 26, 1090-1100.	1.0	112
64	Anthropogenic N deposition increases soil organic matterÂaccumulation without altering its biochemical composition. Global Change Biology, 2017, 23, 933-944.	4.2	111
65	Small scale spatial variability of organic carbon stocks in litter and solum of a forested Luvisol. Geoderma, 2006, 136, 631-642.	2.3	110
66	How are soil use and management reflected by soil organic matter characteristics: a spectroscopic approach. European Journal of Soil Science, 2006, 57, 485-494.	1.8	108
67	Aggregate stability and physical protection of soil organic carbon in semiâ€arid steppe soils. European Journal of Soil Science, 2012, 63, 22-31.	1.8	107
68	Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria) – Implications for carbon sequestration. Forest Ecology and Management, 2013, 295, 162-172.	1.4	107
69	Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: effects of climate change and carbon input trends. Scientific Reports, 2016, 6, 32525.	1.6	107
70	Partitioning of polycyclic aromatic hydrocarbons (PAH) to water-soluble soil organic matter. European Journal of Soil Science, 1995, 46, 193-204.	1.8	106
71	MALDI-TOF mass spectrometry and PSD fragmentation as means for the analysis of condensed tannins in plant leaves and needles. Phytochemistry, 2003, 62, 1159-1170.	1.4	106
72	Sorption of polycyclic aromatic hydrocarbons to mineral surfaces. European Journal of Soil Science, 2007, 58, 918-931.	1.8	106

#	Article	IF	CITATIONS
73	N balance and cycling of Inner Mongolia typical steppe: a comprehensive case study of grazing effects. Ecological Monographs, 2013, 83, 195-219.	2.4	105
74	Chemical heterogeneity of humic substances: characterization of size fractions obtained by hollowâ€fibre ultrafiltration. European Journal of Soil Science, 2000, 51, 617-625.	1.8	104
75	Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils. Chemosphere, 1998, 36, 79-97.	4.2	102
76	Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biology and Biochemistry, 2006, 38, 2411-2424.	4.2	102
77	Concurrent evolution of organic and mineral components during initial soil development after retreat of the Damma glacier, Switzerland. Geoderma, 2011, 163, 83-94.	2.3	102
78	Humic substances distribution and transformation in forest soils. Science of the Total Environment, 1992, 117-118, 155-174.	3.9	99
79	Soil Type-Dependent Responses to Phenanthrene as Revealed by Determining the Diversity and Abundance of Polycyclic Aromatic Hydrocarbon Ring-Hydroxylating Dioxygenase Genes by Using a Novel PCR Detection System. Applied and Environmental Microbiology, 2010, 76, 4765-4771.	1.4	98
80	Indications for soil organic matter quality in soils under different management. Geoderma, 2002, 105, 243-258.	2.3	97
81	Types and chemical composition of organic matter in reforested lignite-rich mine soils. Geoderma, 1998, 86, 123-142.	2.3	95
82	STXM and NanoSIMS Investigations on EPS Fractions before and after Adsorption to Goethite. Environmental Science & Technology, 2013, 47, 3158-3166.	4.6	95
83	Carbon storage capacity of semiâ€arid grassland soils and sequestration potentials in northern China. Global Change Biology, 2015, 21, 3836-3845.	4.2	95
84	Alteration of soil organic matter pools and aggregation in semiâ€arid steppe topsoils as driven by organic matter input. European Journal of Soil Science, 2009, 60, 198-212.	1.8	93
85	Submicron scale imaging of soil organic matter dynamics using NanoSIMS – From single particles to intact aggregates. Organic Geochemistry, 2012, 42, 1476-1488.	0.9	93
86	Development of biogeochemical interfaces in an artificial soil incubation experiment; aggregation and formation of organo-mineral associations. Geoderma, 2012, 189-190, 585-594.	2.3	92
87	Speciation of sulphur in soils and soil particles by X-ray spectromicroscopy. European Journal of Soil Science, 2003, 54, 423-433.	1.8	91
88	Organic carbon accumulation in a 2000-year chronosequence of paddy soil evolution. Catena, 2011, 87, 376-385.	2.2	91
89	Decoupled carbon and nitrogen mineralization in soil particle size fractions of a forest topsoil. Soil Biology and Biochemistry, 2014, 78, 263-273.	4.2	91
90	Refractory organic carbon in C-depleted arable soils, as studied by 13C NMR spectroscopy and carbohydrate analysis. Organic Geochemistry, 2000, 31, 655-668.	0.9	89

#	Article	IF	CITATIONS
91	Characteristics of soil organic matter of different Brazilian Ferralsols under native vegetation as a function of soil depth. Geoderma, 2005, 124, 319-333.	2.3	89
92	Non-cellulosic neutral sugar contribution to mineral associated organic matter in top- and subsoil horizons of two acid forest soils. Soil Biology and Biochemistry, 2010, 42, 379-382.	4.2	89
93	Soil organic matter in major pedogenic soil groups. Geoderma, 2021, 384, 114785.	2.3	89
94	Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biology and Fertility of Soils, 2009, 45, 347-359.	2.3	86
95	Soil microaggregate size composition and organic matter distribution as affected by clay content. Geoderma, 2019, 355, 113901.	2.3	86
96	Accumulation of nitrogen and microbial residues during 2000Âyears of rice paddy and non-paddy soil development in the Yangtze River Delta, China. Global Change Biology, 2011, 17, 3405-3417.	4.2	85
97	The carbon count of 2000Âyears of rice cultivation. Global Change Biology, 2013, 19, 1107-1113.	4.2	85
98	Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions. Scientific Reports, 2018, 8, 6852.	1.6	84
99	Large soil organic carbon increase due to improved agronomic management in the North China Plain from 1980s to 2010s. Global Change Biology, 2018, 24, 987-1000.	4.2	84
100	Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions. Biology and Fertility of Soils, 2015, 51, 427-442.	2.3	82
101	Carbon and nitrogen mineralization in hierarchically structured aggregates of different size. Soil and Tillage Research, 2016, 160, 23-33.	2.6	80
102	Organic carbon and nitrogen in fine soil fractions after treatment with hydrogen peroxide. Soil Biology and Biochemistry, 2001, 33, 2155-2158.	4.2	79
103	Land use effects on organic carbon storage in soils of Bavaria: The importance of soil types. Soil and Tillage Research, 2015, 146, 296-302.	2.6	79
104	Spatial distribution and chemical composition of soil organic matter fractions in rhizosphere and non-rhizosphere soil under European beech (Fagus sylvatica L.). Geoderma, 2016, 264, 179-187.	2.3	79
105	Degradation and small-scale spatial homogenization of topsoils in intensively-grazed steppes of Northern China. Soil and Tillage Research, 2009, 104, 299-310.	2.6	78
106	Changes in the chemical composition of soil organic matter after application of compost. European Journal of Soil Science, 2002, 53, 299-309.	1.8	77
107	Management-induced organic carbon accumulation in paddy soils: The role of organo-mineral associations. Soil and Tillage Research, 2013, 126, 60-71.	2.6	77
108	Mineral composition and charcoal determine the bacterial community structure in artificial soils. FEMS Microbiology Ecology, 2013, 86, 15-25.	1.3	76

#	Article	IF	CITATIONS
109	Artificial soil studies reveal domain-specific preferences of microorganisms for the colonisation of different soil minerals and particle size fractions. FEMS Microbiology Ecology, 2014, 90, 770-782.	1.3	76
110	Accelerated soil formation due to paddy management on marshlands (Zhejiang Province, China). Geoderma, 2014, 228-229, 67-89.	2.3	76
111	Organic matter input determines structure development and aggregate formation in artificial soils. Geoderma, 2019, 354, 113881.	2.3	76
112	Advances in Molecular Approaches for Understanding Soil Organic Matter Composition, Origin, and Turnover: A Historical Overview. Advances in Agronomy, 2018, , 1-48.	2.4	75
113	Clay fractions from a soil chronosequence after glacier retreat reveal the initial evolution of organo–mineral associations. Geochimica Et Cosmochimica Acta, 2012, 85, 1-18.	1.6	74
114	Comparison of humus horizons from two ecosystem phases on northern Vancouver Island using 13C CPMAS NMR spectroscopy and CuO oxidation. Canadian Journal of Soil Science, 1993, 73, 9-25.	0.5	73
115	Intimate association between O/N-alkyl carbon and iron oxides in clay fractions of forest soils. Organic Geochemistry, 2005, 36, 1378-1390.	0.9	73
116	Impact of brown coal dust on the organic matter in particle-size fractions of a Mollisol. Organic Geochemistry, 1996, 25, 29-39.	0.9	72
117	Tracing the sources and spatial distribution of organic carbon in subsoils using a multi-biomarker approach. Scientific Reports, 2016, 6, 29478.	1.6	72
118	Iron Oxides as Major Available Interface Component in Loamy Arable Topsoils. Soil Science Society of America Journal, 2011, 75, 2158-2168.	1.2	71
119	Organic matter from biological soil crusts induces the initial formation of sandy temperate soils. Catena, 2014, 122, 196-208.	2.2	71
120	Changes in the structure and protein binding ability of condensed tannins during decomposition of fresh needles and leaves. Soil Biology and Biochemistry, 2003, 35, 577-589.	4.2	68
121	Composition and radiocarbon age of HF-resistant soil organic matter in a Podzol and a Cambisol. Organic Geochemistry, 2007, 38, 1356-1372.	0.9	68
122	Alteration of gymnosperm and angiosperm lignin during decomposition in forest humus layers. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1986, 149, 323-331.	0.4	67
123	Estimation of total organic carbon storage and its driving factors in soils of Bavaria (southeast) Tj ETQq1 1 0.7	84314 _{.9} gBT	/Overlock 10
124	The role of allophane nano-structure and Fe oxide speciation for hosting soil organic matter in an allophanic Andosol. Geochimica Et Cosmochimica Acta, 2016, 180, 284-302.	1.6	67
125	Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments. Biology and Fertility of Soils, 2017, 53, 9-22.	2.3	67
126	Organic matter accumulating in Aeh and Bh horizons of a Podzol— chemical characterization in primary organo-mineral associations. Organic Geochemistry, 2000, 31, 727-734.	0.9	66

#	Article	IF	CITATIONS
127	Quantification of functional soil organic carbon pools for major soil units and land uses in southeast Germany (Bavaria). Agriculture, Ecosystems and Environment, 2014, 185, 208-220.	2.5	65
128	Establishment of macro-aggregates and organic matter turnover by microbial communities in long-term incubated artificial soils. Soil Biology and Biochemistry, 2014, 79, 57-67.	4.2	65
129	Changes in the lignin fraction of spruce and pine needle litter during decomposition as studied by some chemical methods. Soil Biology and Biochemistry, 1986, 18, 611-619.	4.2	63
130	Biological activity and organic matter mineralization of soils amended with biowaste composts. Journal of Plant Nutrition and Soil Science, 2002, 165, 151.	1.1	63
131	Soil organic matter composition and soil lightness. Journal of Plant Nutrition and Soil Science, 2004, 167, 545-555.	1.1	63
132	The modeling of reactive solute transport with sorption to mobile and immobile sorbents: 1. Experimental evidence and model development. Water Resources Research, 1996, 32, 1611-1622.	1.7	61
133	Patterns and processes of initial terrestrialâ€ecosystem development. Journal of Plant Nutrition and Soil Science, 2011, 174, 229-239.	1.1	61
134	Organic carbon accumulation on soil mineral surfaces in paddy soils derived from tidal wetlands. Geoderma, 2014, 228-229, 90-103.	2.3	60
135	Nature of organic nitrogen in fine particle size separates of sandy soils of highly industrialized areas as revealed by NMR spectroscopy. Soil Biology and Biochemistry, 2000, 32, 241-252.	4.2	59
136	Quantification of carbon derived from lignite in soils using mid-infrared spectroscopy and partial least squares. Organic Geochemistry, 2001, 32, 831-839.	0.9	59
137	O/N-alkyl and alkyl C are stabilised in fine particle size fractions of forest soils. Biogeochemistry, 2005, 73, 475-497.	1.7	59
138	Title is missing!. Plant and Soil, 1999, 213, 161-168.	1.8	58
139	Changes of lignin phenols and neutral sugars in different soil types of a high-elevation forest ecosystem 25 years after forest dieback. Soil Biology and Biochemistry, 2007, 39, 655-668.	4.2	58
140	Is turnover and development of organic matter controlled by mineral composition?. Soil Biology and Biochemistry, 2013, 67, 235-244.	4.2	58
141	The fate of cutin and suberin of decaying leaves, needles and roots – Inferences from the initial decomposition of bound fatty acids. Organic Geochemistry, 2016, 95, 81-92.	0.9	58
142	Identification of Distinct Functional Microstructural Domains Controlling C Storage in Soil. Environmental Science & Technology, 2017, 51, 12182-12189.	4.6	58
143	Distribution of soil organic matter between fractions and aggregate size classes in grazed semiarid steppe soil profiles. Plant and Soil, 2011, 338, 63-81.	1.8	57
144	Grazing changes topography-controlled topsoil properties and their interaction on different spatial scales in a semi-arid grassland of Inner Mongolia, P.R. China. Plant and Soil, 2011, 340, 35-58.	1.8	55

#	Article	IF	CITATIONS
145	Distribution of cutin and suberin biomarkers under forest trees with different root systems. Plant and Soil, 2014, 381, 95-110.	1.8	55
146	Distribution and decomposition pattern of cutin and suberin in forest soils. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1989, 152, 409-413.	0.4	54
147	Refractory organic carbon in particle-size fractions of arable soils I: distribution of refractory carbon between the size fractions. Organic Geochemistry, 2002, 33, 1683-1697.	0.9	54
148	Rhizosphere Spatiotemporal Organization–A Key to Rhizosphere Functions. Frontiers in Agronomy, 2020, 2, .	1.5	54
149	Influence of origin and properties of dissolved organic matter on the partition of polycyclic aromatic hydrocarbons (PAHs). European Journal of Soil Science, 1997, 48, 443-455.	1.8	54
150	Araucaria forest expansion on grassland in the southern Brazilian highlands as revealed by 14C and δ13C studies. Geoderma, 2008, 145, 143-157.	2.3	53
151	NanoSIMS as a tool for characterizing soil model compounds and organomineral associations in artificial soils. Journal of Soils and Sediments, 2012, 12, 35-47.	1.5	53
152	Stagnating crop yields: An overlooked risk for the carbon balance of agricultural soils?. Science of the Total Environment, 2015, 536, 1045-1051.	3.9	53
153	Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology, 2022, 52, 4308-4324.	6.6	52
154	Fate of anthracene in contaminated soil: transport and biochemical transformation under unsaturated flow conditions. European Journal of Soil Science, 2002, 53, 71-81.	1.8	51
155	Organic matter in particle-size fractions from A and B horizons of a Haplic Alisol. European Journal of Soil Science, 2002, 53, 383-391.	1.8	51
156	Hotspots of soil organic carbon storage revealed by laboratory hyperspectral imaging. Scientific Reports, 2018, 8, 13900.	1.6	51
157	Feasibility of the 4 per 1000 initiative in Bavaria: A reality check of agricultural soil management and carbon sequestration scenarios. Geoderma, 2020, 369, 114333.	2.3	51
158	Soil Organic Matter Changes in a Spruce Ecosystem 25 Years after Disturbance. Soil Science Society of America Journal, 2006, 70, 2130-2145.	1.2	50
159	Grazing effects on the greenhouse gas balance of a temperate steppe ecosystem. Nutrient Cycling in Agroecosystems, 2012, 93, 357-371.	1.1	50
160	Labile organic C and N mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management. Biology and Fertility of Soils, 2012, 48, 305-313.	2.3	50
161	The role of clay content and mineral surface area for soil organic carbon storage in an arable toposequence. Biogeochemistry, 2021, 156, 401-420.	1.7	50
162	Soil organic carbon sequestration in temperate agroforestry systems – A meta-analysis. Agriculture, Ecosystems and Environment, 2022, 323, 107689.	2.5	50

#	Article	IF	CITATIONS
163	Quantification of lignite- and vegetation-derived soil carbon using 14C activity measurements in a forested chronosequence. Geoderma, 2003, 112, 155-166.	2.3	48
164	Rapid soil formation after glacial retreat shaped by spatial patterns of organic matter accrual in microaggregates. Global Change Biology, 2018, 24, 1637-1650.	4.2	48
165	Desorption of Polycyclic Aromatic Hydrocarbons from Soil in the Presence of Dissolved Organic Matter: Effect of Solution Composition and Aging. Journal of Environmental Quality, 2000, 29, 906-916.	1.0	46
166	Effect of N content and soil texture on the decomposition of organic matter in forest soils as revealed by solid-state CPMAS NMR spectroscopy. Organic Geochemistry, 2002, 33, 1715-1726.	0.9	46
167	Subsoil organo-mineral associations under contrasting climate conditions. Geochimica Et Cosmochimica Acta, 2020, 270, 244-263.	1.6	46
168	A rapid and efficient determination of natural estrogens in soils by pressurised liquid extraction and gas chromatography–mass spectrometry. Chemosphere, 2008, 71, 954-960.	4.2	45
169	A lignin-like polymer in the cuticle of spruce needles: implications for the humification of spruce litter. Organic Geochemistry, 1994, 21, 1219-1228.	0.9	44
170	Organic matter characteristics and distribution in Ferralsol profiles of a climosequence in southern Brazil. European Journal of Soil Science, 2006, 57, 644-654.	1.8	44
171	Particle size fractionation of soil containing coal and combusted particles. European Journal of Soil Science, 1999, 50, 515-522.	1.8	43
172	Release of Polycyclic Aromatic Hydrocarbons, Dissolved Organic Carbon, and Suspended Matter from Disturbed NAPL-Contaminated Gravelly Soil Material. Vadose Zone Journal, 2006, 5, 469-479.	1.3	43
173	Sorption of HOC in soils with carbonaceous contamination: Influence of organic-matter composition. Journal of Plant Nutrition and Soil Science, 2005, 168, 293-306.	1.1	42
174	Climate Change Impairs Nitrogen Cycling in European Beech Forests. PLoS ONE, 2016, 11, e0158823.	1.1	42
175	Detection of charred organic matter in soils from a Neolithic settlement in Southern Bavaria, Germany. Geoderma, 2002, 107, 71-91.	2.3	41
176	The role of lignite in the carbon cycle of lignite-containing mine soils: evidence from carbon mineralisation and humic acid extractions. Organic Geochemistry, 2002, 33, 393-399.	0.9	41
177	SOIL ORGANIC MATTER CHANGES IN A SPRUCE CHRONOSEQUENCE ON SWEDISH FORMER AGRICULTURAL SOIL. Soil Science, 2006, 171, 837-849.	0.9	41
178	A mosaic of nonallophanic Andosols, Umbrisols and Cambisols on rhyodacite in the southern Brazilian highlands. Geoderma, 2008, 145, 158-173.	2.3	41
179	Bioavailability and isotopic composition of CO2 released from incubated soil organic matter fractions. Soil Biology and Biochemistry, 2014, 69, 168-178.	4.2	41
180	Initial pedogenesis in a topsoil crust 3Âyears after construction of an artificial catchment in Brandenburg, NE Germany. Biogeochemistry, 2010, 101, 165-176.	1.7	40

#	Article	IF	CITATIONS
181	Changes in the Chemical Structure of Municipal Solid Waste during Composting as Studied by Solid-State Dipolar Dephasing and PSRE 13C NMR and Solid-State 15N NMR Spectroscopy. Environmental Science & Technology, 2000, 34, 4034-4038.	4.6	39
182	Properties of dissolved organic matter related to soil organic matter quality and nitrogen additions in Norway spruce forest floors. Geoderma, 2006, 130, 250-264.	2.3	38
183	Single Event-Driven Export of Polycyclic Aromatic Hydrocarbons and Suspended Matter from Coal Tar-Contaminated Soil. Vadose Zone Journal, 2007, 6, 233-243.	1.3	38
184	Organic carbon in soils of Germany:Status quoand the need for new data to evaluate potentials and trends of soil carbon sequestration. Journal of Plant Nutrition and Soil Science, 2009, 172, 601-614.	1.1	38
185	Estimation of past and recent carbon input by crops into agricultural soils of southeast Germany. European Journal of Agronomy, 2014, 61, 10-23.	1.9	38
186	Amino sugar determination in organic soils by capillary gas chromatography using a nitrogen-selective detector. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1985, 148, 260-267.	0.4	37
187	Chemistry of soil organic matter as related to C : N in Norway spruce forest (Picea abies(L.) Karst.) floors and mineral soils. Journal of Plant Nutrition and Soil Science, 2002, 165, 281-289.	1.1	37
188	Soil Aggregate Destruction by Ultrasonication Increases Soil Organic Matter Mineralization and Mobility. Soil Science Society of America Journal, 2012, 76, 1634-1643.	1.2	37
189	Changes in aromaticity and carbon distribution of soil organic matter due to pedogenesis. Science of the Total Environment, 1989, 81-82, 179-186.	3.9	36
190	Mobile Organic Sorbent Affected Contaminant Transport in Soil: Numerical Case Studies for Enhanced and Reduced Mobility. Vadose Zone Journal, 2004, 3, 352-367.	1.3	36
191	Transport and anaerobic biodegradation of propylene glycol in gravel-rich soil materials. Journal of Contaminant Hydrology, 2006, 85, 271-286.	1.6	36
192	Shortâ€ŧerm degradation of semiarid grasslands—results from a controlledâ€grazing experiment in Northern China. Journal of Plant Nutrition and Soil Science, 2012, 175, 434-442.	1.1	36
193	Response of Vertisols, Andosols, and Alisols to paddy management. Geoderma, 2016, 261, 23-35.	2.3	36
194	Microbial use of lignite compared to recent plant litter as substrates in reclaimed coal mine soils. Soil Biology and Biochemistry, 2004, 36, 67-75.	4.2	35
195	An indicator for organic matter dynamics in temperate agricultural soils. Agriculture, Ecosystems and Environment, 2019, 274, 62-75.	2.5	35
196	The modeling of reactive solute transport with sorption to mobile and immobile sorbents: 2. Model discussion and numerical simulation. Water Resources Research, 1996, 32, 1623-1634.	1.7	34
197	Techniques for the differentiation of carbon types present in lignite-rich mine soils. Organic Geochemistry, 2000, 31, 543-551.	0.9	34
198	Initial differentiation of vertical soil organic matter distribution and composition under juvenile beech (Fagus sylvatica L.) trees. Plant and Soil, 2009, 323, 111-123.	1.8	34

2.3

29

#	Article	IF	CITATIONS
199	Comparison of soil organic carbon speciation using C NEXAFS and CPMAS 13C NMR spectroscopy. Science of the Total Environment, 2018, 628-629, 906-918.	3.9	34
200	Phosphorus nutrition of Populus × canescens reflects adaptation to high P-availability in the soil. Tree Physiology, 2018, 38, 6-24.	1.4	34
201	Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing. Science of the Total Environment, 1989, 81-82, 169-177.	3.9	33
202	Sulfur speciation in wellâ€aerated and wetland soils in a forested catchment assessed by sulfur <i>K</i> â€edge Xâ€ray absorption nearâ€edge spectroscopy (XANES). Journal of Plant Nutrition and Soil Science, 2009, 172, 393-403.	1.1	33
203	Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene. FEMS Microbiology Ecology, 2013, 86, 3-14.	1.3	33
204	Urban waste composts enhance OC and N stocks after long-term amendment but do not alter organic matter composition. Agriculture, Ecosystems and Environment, 2016, 223, 211-222.	2.5	33
205	Controlling factors of organic carbon stocks in agricultural topsoils and subsoils of Bavaria. Soil and Tillage Research, 2019, 192, 22-32.	2.6	33
206	Analysis of hydrolysable neutral sugars in mineral soils: Improvement of alditol acetylation for gas chromatographic separation and measurement. Organic Geochemistry, 2010, 41, 580-585.	0.9	32
207	Insights into Carbon Metabolism Provided by Fluorescence <i>In Situ</i> Hybridization-Secondary Ion Mass Spectrometry Imaging of an Autotrophic, Nitrate-Reducing, Fe(II)-Oxidizing Enrichment Culture. Applied and Environmental Microbiology, 2018, 84, .	1.4	32
208	Initial soil formation in an agriculturally reclaimed open-cast mining area - the role of management and loess parent material. Soil and Tillage Research, 2019, 191, 224-237.	2.6	32
209	Initial soil aggregate formation and stabilisation in soils developed from calcareous loess. Geoderma, 2021, 385, 114854.	2.3	32
210	Comparison of carbon and nitrogen determination methods for samples of a Paleudult subjected to no-till cropping systems. Scientia Agricola, 2007, 64, 532-540.	0.6	31
211	Wet sieving versus dry crushing: Soil microaggregates reveal different physical structure, bacterial diversity and organic matter composition in a clay gradient. European Journal of Soil Science, 2021, 72, 810-828.	1.8	31
212	Disentangling the effects of OM quality and soil texture on microbially mediated structure formation in artificial model soils. Geoderma, 2021, 403, 115213.	2.3	31
213	PAH mobility in contaminated industrial soils: a Markov chain approach to the spatial variability of soil properties and PAH levels. Geoderma, 2001, 102, 371-389.	2.3	30
214	Spatial variability of topsoils and vegetation in a grazed steppe ecosystem in Inner Mongolia (PR) Tj ETQq0 0 0 rg	gBT ∕Overla 1.1	ock 10 Tf 50
215	Increased methane uptake but unchanged nitrous oxide flux in montane grasslands under simulated climate change conditions. European Journal of Soil Science, 2013, 64, 586-596.	1.8	30

216 Carbon distribution in different compartments of forest soils. Geoderma, 1993, 56, 515-525.

#	Article	IF	CITATIONS
217	Chemolytic Analysis of Organic Matter during Aerobic and Anaerobic Treatment of Municipal Solid Waste. Journal of Environmental Quality, 2000, 29, 1337-1344.	1.0	29
218	Mobility of the growth promoters trenbolone and melengestrol acetate in agricultural soil: column studies. Science of the Total Environment, 2004, 326, 225-237.	3.9	29
219	Anoxic versus oxic sample pretreatment: Effects on the speciation of sulfur and iron in well-aerated and wetland soils as assessed by X-ray absorption near-edge spectroscopy (XANES). Geoderma, 2009, 153, 318-330.	2.3	29
220	A multi-technique approach to assess the fate of biochar in soil and to quantify its effect on soil organic matter composition. Organic Geochemistry, 2017, 112, 177-186.	0.9	29
221	Root-induced fungal growth triggers macroaggregation in forest subsoils. Soil Biology and Biochemistry, 2021, 157, 108244.	4.2	29
222	Climate Change Induces Shifts in Abundance and Activity Pattern of Bacteria and Archaea Catalyzing Major Transformation Steps in Nitrogen Turnover in a Soil from a Mid-European Beech Forest. PLoS ONE, 2014, 9, e114278.	1.1	29
223	CP-MAS-13C-NMR-Spektren organischer Lagen einer Tangelrendzina. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1985, 148, 481-488.	0.4	28
224	Title is missing!. Water, Air, and Soil Pollution, 1998, 105, 481-492.	1.1	28
225	Soil micro- and mesopores studied by N2 adsorption and 129Xe NMR of adsorbed xenon. Geoderma, 2006, 130, 218-228.	2.3	28
226	Soil organic matter transformations induced by Hieracium pilosella L. in tussock grassland of New Zealand. Biology and Fertility of Soils, 2000, 32, 194-201.	2.3	27
227	Airborne Contamination of Forest Soils by Carbonaceous Particles from Industrial Coal Processing. Journal of Environmental Quality, 2000, 29, 768-777.	1.0	27
228	Organo-mineral interactions and soil carbon mineralizability with variable saturation cycle frequency. Geoderma, 2020, 375, 114483.	2.3	27
229	Pruning residues incorporation and reduced tillage improve soil organic matter stabilization and structure of salt-affected soils in a semi-arid Citrus tree orchard. Soil and Tillage Research, 2021, 213, 105129.	2.6	27
230	Earthworms as catalysts in the formation and stabilization of soil microbial necromass. Global Change Biology, 2022, 28, 4775-4782.	4.2	27
231	The influence of humus fractionation on the chemical composition of soil organic matter studied by solid-state 13C NMR. Journal of Soil Science, 1992, 43, 473-483.	1.2	26
232	Composition of organic matter in a subtropical Acrisol as influenced by land use, cropping and N fertilization, assessed by CPMAS 13C NMR spectroscopy. European Journal of Soil Science, 2005, 56, 050912034650051.	1.8	26
233	Site-specific spatial patterns of soil organic carbon stocks in different landscape units of a high-elevation forest including a site with forest dieback. Geoderma, 2009, 152, 218-230.	2.3	26
234	The role of lignin for the δ13C signature in C4 grassland and C3 forest soils. Soil Biology and Biochemistry, 2013, 57, 1-13.	4.2	26

#	Article	IF	CITATIONS
235	Prolonged summer droughts retard soil N processing and stabilization in organo-mineral fractions. Soil Biology and Biochemistry, 2014, 68, 241-251.	4.2	26
236	Recent advances in the spectroscopic characterization of soil humic substances and their ecological relevance. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1994, 157, 175-186.	0.4	25
237	Alkyl C and hydrophobicity in B and C horizons of an acid forest soil. Journal of Plant Nutrition and Soil Science, 2004, 167, 685-692.	1.1	25
238	A comparison of two methods for the isolation of free and occluded particulate organic matter. Journal of Plant Nutrition and Soil Science, 2005, 168, 660-667.	1.1	25
239	Changes in soil organic matter composition are associated with forest encroachment into grassland with longâ€ŧerm fire history. European Journal of Soil Science, 2009, 60, 578-589.	1.8	24
240	Response to the Concept paper: 'What is recalcitrant soil organic matter?' by Markus Kleber. Environmental Chemistry, 2010, 7, 333.	0.7	24
241	Minor contribution of leaf litter to N nutrition of beech (Fagus sylvatica) seedlings in a mountainous beech forest of Southern Germany. Plant and Soil, 2013, 369, 657-668.	1.8	24
242	Decoupling of subsoil carbon and nitrogen dynamics after long-term crop rotation and fertilization. Agriculture, Ecosystems and Environment, 2018, 265, 363-373.	2.5	24
243	CHEMICAL COMPOSITION OF THE ORGANIC MATTER IN NEOLITHIC SOIL MATERIAL AS REVEALED BY CPMAS 13C NMR SPECTROSCOPY, POLYSACCHARIDE ANALYSIS, AND CuO OXIDATION. Soil Science, 2001, 166, 569-584.	0.9	23
244	Composition and distribution of organic matter in physical fractions of a rehabilitated mine soil rich in lignite-derived carbon. Geoderma, 2000, 98, 177-192.	2.3	22
245	Preferential flow and aging of NAPL in the unsaturated soil zone of a hazardous waste site: implications for contaminant transport. Journal of Plant Nutrition and Soil Science, 2003, 166, 102-110.	1.1	22
246	Carbon and nitrogen balance in beech roots under competitive pressure of soil-borne microorganisms induced by girdling, drought and glucose application. Functional Plant Biology, 2010, 37, 879.	1.1	22
247	Steppe ecosystems and climate and land-use changes—vulnerability, feedbacks and possibilities for adaptation. Plant and Soil, 2011, 340, 1-6.	1.8	22
248	Stand scale variability of topsoil organic matter composition in a high-elevation Norway spruce forest ecosystem. Geoderma, 2016, 267, 112-122.	2.3	22
249	Effect of base hydrolysis on the chemical composition of organic matter of an acid forest soil. Organic Geochemistry, 2005, 36, 239-249.	0.9	21
250	Decomposition and distribution of 15N labelled mustard litter (Sinapis alba) in physical soil fractions of a cropland with high- and low-yield field areas. Soil Biology and Biochemistry, 2006, 38, 3292-3302.	4.2	21
251	Novel Sample Preparation Technique To Improve Spectromicroscopic Analyses of Micrometer-Sized Particles. Environmental Science & Technology, 2015, 49, 9874-9880.	4.6	21
252	Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation. ISME Journal, 2015, 9, 1687-1691.	4.4	21

#	Article	IF	CITATIONS
253	Succession of soil microbial communities and enzyme activities in artificial soils. Pedobiologia, 2016, 59, 93-104.	0.5	21
254	Rebuilding soil carbon in degraded steppe soils of <scp>E</scp> astern <scp>E</scp> urope: The importance of windbreaks and improved cropland management. Land Degradation and Development, 2018, 29, 875-883.	1.8	21
255	Controlling factors of carbon dynamics in grassland soils of Bavaria between 1989 and 2016. Agriculture, Ecosystems and Environment, 2019, 280, 118-128.	2.5	21
256	Changes in litter chemistry and soil lignin signature during decomposition and stabilisation of 13C labelled wheat roots in three subsoil horizons. Soil Biology and Biochemistry, 2013, 67, 55-61.	4.2	20
257	Decomposition in forest humus layers studied by CPMAS 13C NMR, pyrolysis-field ionization-mass spectrometry and CuO oxidation. Science of the Total Environment, 1987, 62, 111-113.	3.9	19
258	Does ultrasonic dispersion and homogenization by ball milling change the chemical structure of organic matter in geochemical samples?—a CPMAS 13C NMR study with lignin. Organic Geochemistry, 1997, 26, 491-496.	0.9	19
259	Microaggregates in agricultural soils and their size distribution determined by X-ray attenuation. European Journal of Soil Science, 2003, 54, 167-174.	1.8	19
260	CP dynamics of heterogeneous organic material: characterization of molecular domains in coals. Solid State Nuclear Magnetic Resonance, 2004, 25, 252-266.	1.5	19
261	129Xe NMR spectroscopy of adsorbed xenon as an approach for the characterisation of soil meso- and microporosity. Geoderma, 2004, 122, 25-42.	2.3	19
262	Stable carbon isotope signature and chemical composition of organic matter in lignite-containing mine soils and sediments are closely linked. Organic Geochemistry, 2007, 38, 835-844.	0.9	19
263	Drivers of organic carbon allocation in a temperate slope-floodplain catena under agricultural use. Geoderma, 2018, 327, 63-72.	2.3	19
264	Combination of Imaging Infrared Spectroscopy and X-ray Computed Microtomography for the Investigation of Bio- and Physicochemical Processes in Structured Soils. Frontiers in Environmental Science, 2020, 8, .	1.5	19
265	Micromorphological, wet-chemical and 13C NMR spectroscopic characterization of density fractionated forest soils. Science of the Total Environment, 1989, 81-82, 401-408.	3.9	18
266	Amino sugars reflect microbial residues as affected by clay mineral composition of artificial soils. Organic Geochemistry, 2015, 83-84, 109-113.	0.9	18
267	Organic matter in temperate cultivated floodplain soils: Light fractions highly contribute to subsoil organic carbon. Geoderma, 2019, 337, 679-690.	2.3	18
268	Stabilization of Composted Organic Matter after Application to a Humusâ€Free Sandy Mining Soil. Journal of Environmental Quality, 2001, 30, 602-607.	1.0	17
269	Solid-state 13 C NMR spectroscopic, chemolytic and biological assessment of pretreated municipal solid waste. Journal of Industrial Microbiology and Biotechnology, 2001, 26, 83-89.	1.4	17
270	Alteration of organic matter during remediation of acid sulfate soils. Geoderma, 2018, 332, 121-134.	2.3	17

#	Article	IF	CITATIONS
271	Linking organic matter composition in acid sulfate soils to pH recovery after re-submerging. Geoderma, 2017, 308, 350-362.	2.3	16
272	Combination of energy limitation and sorption capacity explains 14C depth gradients. Soil Biology and Biochemistry, 2020, 148, 107912.	4.2	16
273	Explicit spatial modeling at the pore scale unravels the interplay of soil organic carbon storage and structure dynamics. Clobal Change Biology, 2022, 28, 4589-4604.	4.2	16
274	The phenolic acid content of cashew leaves (Anacardium occidentale L.) and of the associated humus layer, Senegal. Geoderma, 1985, 35, 119-125.	2.3	15
275	Soil Organic Nitrogen Formation Examined by Means of NMR Spectroscopy. ACS Symposium Series, 1998, , 339-356.	0.5	15
276	Dynamics of13C-labeled mustard litter (Sinapis alba) in particle-size and aggregate fractions in an agricultural cropland with high- and low-yield areas. Journal of Plant Nutrition and Soil Science, 2007, 170, 123-133.	1.1	15
277	Chemical Structure of Organic N and Organic P in Soil. , 2006, , 23-48.		15
278	Soil Mineral Composition Matters: Response of Microbial Communities to Phenanthrene and Plant Litter Addition in Long-Term Matured Artificial Soils. PLoS ONE, 2014, 9, e106865.	1.1	15
279	Evaluating pore structures of soil components with a combination of "conventional―and hyperpolarised 129Xe NMR studies. Geoderma, 2011, 162, 96-106.	2.3	14
280	Uncertainty of variance component estimates in nested sampling: a case study on the fieldâ€scale spatial variability of a restored soil. European Journal of Soil Science, 2011, 62, 479-495.	1.8	14
281	Consumption and alteration of different organic matter sources during remediation of a sandy sulfuric soil. Geoderma, 2019, 347, 220-232.	2.3	14
282	Microbial Key Players Involved in P Turnover Differ in Artificial Soil Mixtures Depending on Clay Mineral Composition. Microbial Ecology, 2021, 81, 897-907.	1.4	14
283	A Simple Approach to Isolate Slow and Fast Cycling Organic Carbon Fractions in Central European Soils—Importance of Dispersion Method. Frontiers in Soil Science, 2021, 1, .	0.8	14
284	Binding of per- and polyfluoroalkyl substances (PFASs) by organic soil materials with different structural composition – Charge- and concentration-dependent sorption behavior. Chemosphere, 2022, 297, 134167.	4.2	14
285	Characterisation of the microbial biomass in lignite-containing mine soils by radiocarbon measurements. Soil Biology and Biochemistry, 2001, 33, 2019-2021.	4.2	13
286	Airborne contaminants in the refractory organic carbon fraction of arable soils in highly industrialized areas. Geoderma, 2003, 114, 109-137.	2.3	13
287	Density fractionation of organic matter in dolomiteâ€derived soils. Journal of Plant Nutrition and Soil Science, 2013, 176, 509-519.	1.1	13
288	Biotic and abiotic controls on carbon storage in aggregates in calcareous alpine and prealpine grassland soils. Biology and Fertility of Soils, 2021, 57, 203-218.	2.3	13

#	Article	IF	CITATIONS
289	Mobile Organic Sorbent Affected Contaminant Transport in Soil: Numerical Case Studies for Enhanced and Reduced Mobility. Vadose Zone Journal, 2004, 3, 352-367.	1.3	13
290	Gel permeation chromatography of water-soluble organic matter with deionized water as eluent II. Spectroscopic and chemical characterization of fractions obtained from an aqueous litter extract. Science of the Total Environment, 1989, 81-82, 447-457.	3.9	12
291	Release and mobility of polycyclic aromatic hydrocarbons and iron-cyanide complexes in contaminated soil. Journal of Plant Nutrition and Soil Science, 2001, 164, 643-649.	1.1	12
292	Soil Organic Matter. , 2016, , 55-86.		12
293	Legacy of Rice Roots as Encoded in Distinctive Microsites of Oxides, Silicates, and Organic Matter. Soils, 2017, 1, 2.	1.0	12
294	Soil organic carbon accrual due to more efficient microbial utilization of plant inputs at greater long-term soil moisture. Geochimica Et Cosmochimica Acta, 2022, 327, 170-185.	1.6	12
295	Sorption behavior of a new acidic herbicide in soils. Chemosphere, 1990, 21, 1397-1410.	4.2	11
296	Characterisation of Organic Matter and Carbon Cycling in Rehabilitated Lignite-rich Mine Soils. Water, Air and Soil Pollution, 2003, 3, 153-166.	0.8	11
297	Biological and physicochemical processes and control of soil organic matter stabilization and turnover. European Journal of Soil Science, 2006, 57, 425-425.	1.8	11
298	Rapid transfer of 15N from labeled beech leaf litter to functional soil organic matter fractions in a Rendzic Leptosol. Soil Biology and Biochemistry, 2013, 58, 323-331.	4.2	11
299	Stable-isotope Raman microspectroscopy for the analysis of soil organic matter. Analytical and Bioanalytical Chemistry, 2018, 410, 923-931.	1.9	10
300	Legacy of plaggen agriculture: High soil organic carbon stocks as result from high carbon input and volume increase. Geoderma, 2022, 406, 115513.	2.3	10
301	Desorption controlled mobility and intrinsic biodegradation of anthracene in unsaturated soil. Physics and Chemistry of the Earth, 1999, 24, 549-555.	0.3	9
302	Organic N forms of a subtropical Acrisol under no-till cropping systems as assessed by acid hydrolysis and solid-state NMR spectroscopy. Biology and Fertility of Soils, 2005, 42, 153-158.	2.3	9
303	Spectroscopic and Wet Chemical Characterization of Solid Waste Organic Matter of Different Age in Landfill Sites, Southern Germany. Journal of Environmental Quality, 2008, 37, 146-153.	1.0	9
304	Editorial "Ecosystems in transition: interactions and feedbacks with an emphasis on the initial development". Biogeosciences, 2014, 11, 195-200.	1.3	9
305	Sorption of an acidic herbicide on synthetic iron oxides and soils: sorption isotherms. Science of the Total Environment, 1992, 123-124, 121-131.	3.9	8
306	Effects of landâ€use change on chemical composition of soil organic matter in tropical lowland Bolivia. Grassland Science, 2009, 55, 104-109.	0.6	8

#	Article	IF	CITATIONS
307	Microheterogeneity of element distribution and sulfur speciation in an organic surface horizon of a forested Histosol as revealed by synchrotron-based X-ray spectromicroscopy. Organic Geochemistry, 2011, 42, 1308-1314.	0.9	8
308	Porosity and organic matter distribution in jarositic phyto tubules of sulfuric soils assessed by combined µCT and NanoSIMS analysis. Geoderma, 2021, 399, 115124.	2.3	8
309	Paddy management on different soil types does not promote lignin accumulation. Journal of Plant Nutrition and Soil Science, 2017, 180, 366-380.	1.1	7
310	Organic carbon fractional distribution and saturation in tropical soils of West African savannas with contrasting mineral composition. Catena, 2020, 190, 104550.	2.2	7
311	Onâ€Line Solid Phase Extraction for Polycyclic Aromatic Hydrocarbons in Soil Column Effluents. Journal of Environmental Quality, 1999, 28, 730-732.	1.0	6
312	Binding of a herbicide to water-soluble soil humic substances. Science of the Total Environment, 1992, 117-118, 393-401.	3.9	5
313	Characterization of Soil Organic Nitrogen after Addition of Biogenic Waste Composts by Means of NMR and GC-MS. ACS Symposium Series, 1998, , 293-308.	0.5	5
314	The phenanthreneâ€sorptive interface of an arable topsoil and its particle size fractions. European Journal of Soil Science, 2013, 64, 121-130.	1.8	5
315	A small-scale test for rapid assessment of the soil development potential in post-mining soils. Soil and Tillage Research, 2021, 211, 105016.	2.6	5
316	Bestimmung und Charakterisierung der organischen Substanz in braunkohlehaltigen aschemeliorierten KippenbĶden unter Wald. , 2000, , 261-284.		5
317	Performance of base hydrolysis methods in extracting bound lipids from plant material, soils, and sediments. Organic Geochemistry, 2017, 113, 97-104.	0.9	4
318	Imaging of Al/Fe ratios in synthetic Alâ€goethite revealed by nanoscale secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 619-628.	0.7	4
319	Andosol clay re-aggregation observed at the microscale during physical organic matter fractionation. Journal of Plant Nutrition and Soil Science, 2019, 182, 145-148.	1.1	4
320	The Structure of Organic Nitrogen in Particle Size Fractions Determined by 15N CPMAS NMR. , 1999, , 143-149.		4
321	Spatial distribution of soil organic matter in two fields on tidal flat sediments (Zhejiang Province,) Tj ETQq1 1 0.78 178, 649-657.	4314 rgB ⁻ 1.1	T /Overlock 3
322	Influence of drying vs . freezing of archived soil samples on soil organic matter fractions. Journal of Plant Nutrition and Soil Science, 2019, 182, 772-781.	1.1	3
323	Spatial molecular heterogeneity of <scp>POM</scp> during decomposition at different soil depths resolved by <scp>VNIR</scp> hyperspectral imaging. European Journal of Soil Science, 2022, 73, .	1.8	3
324	Iron interference on matrix-assisted laser desorption/ionisation time-of-flight mass spectra of condensed tannins. Environmental Chemistry Letters, 2004, 2, 71.	8.3	2

#	Article	IF	CITATIONS
325	Nano-structural and chemical characterization of charred organic matter in a fire-affected Arenosol. Geoderma, 2014, 232-234, 538-546.	2.3	2
326	9. Artificial Soils as Tools for Microbial Ecology. , 2017, , 159-180.		2
327	Fate of Plant Components During Biodegradation and Humification in Forest Soils: Evidence from Structural Characterization of Individual Biomacromolecules. , 2003, , 61-70.		1
328	X-Ray Spectromicroscopy Studies in Environmental Sciences. Microscopy and Microanalysis, 2004, 10, 1032-1033.	0.2	0
329	Organische Bodensubstanz. , 2018, , 63-102.		0
330	Mikrobielle Abbaubarkeit von geogenem Kohlenstoff in braunkohlehaltigen Kippböden (Teilprojekt 2.2). , 2000, , 19-37.		0
331	Organische Bodensubstanz. , 2010, , 51-81.		0
332	Organische Bodensubstanz. , 2010, , 51-81.		0
333	VerstÄrkte Auswaschung Organischer Umweltchemikalien durch Bindung an GelĶsten Kohlenstoff?. , 1990, , 379-385.		Ο