
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/584913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery and characterization of differentially expressed soybean miRNAs and their targets during soybean mosaic virus infection unveils novel insight into Soybean-SMV interaction. BMC Genomics, 2022, 23, 171.	2.8	1
2	Evolutionary Variation of Accumulative Day Length and Accumulative Active Temperature Required for Growth Periods in Global Soybeans. Agronomy, 2022, 12, 962.	3.0	2
3	Mapping Locus R and predicting candidate gene resistant to Soybean mosaic virus strain SC11 through linkage analysis combined with genome resequencing of the parents in soybean. Genomics, 2022, , 110387.	2.9	2
4	Evolutionary QTL-allele changes in main stem node number among geographic and seasonal subpopulations of Chinese cultivated soybeans. Molecular Genetics and Genomics, 2021, 296, 313-330.	2.1	5
5	Identifying Wild Versus Cultivated Gene-Alleles Conferring Seed Coat Color and Days to Flowering in Soybean. International Journal of Molecular Sciences, 2021, 22, 1559.	4.1	6
6	Comparative Analyses Reveal Peroxidases Play Important Roles in Soybean Tolerance to Aluminum Toxicity. Agronomy, 2021, 11, 670.	3.0	6
7	The cloning and CRISPR/Cas9â€mediated mutagenesis of a male sterility gene <i>MS1</i> of soybean. Plant Biotechnology Journal, 2021, 19, 1098-1100.	8.3	18
8	Genetic dynamics of flowering date evolved from later to earlier in annual wild and cultivated soybean in China. Crop Science, 2021, 61, 2336-2354.	1.8	6
9	QTLâ€allele system of main stem node number in recombinant inbred lines of soybean (Glycine max) using association versus linkage mapping. Plant Breeding, 2021, 140, 870.	1.9	4
10	Confirmation of <i>GmPPR576</i> as a fertility restorer gene of cytoplasmic male sterility in soybean. Journal of Experimental Botany, 2021, 72, 7729-7742.	4.8	9
11	Gm6PGDH1, a Cytosolic 6-Phosphogluconate Dehydrogenase, Enhanced Tolerance to Phosphate Starvation by Improving Root System Development and Modifying the Antioxidant System in Soybean. Frontiers in Plant Science, 2021, 12, 704983.	3.6	4
12	Transcription Factor GmWRKY46 Enhanced Phosphate Starvation Tolerance and Root Development in Transgenic Plants. Frontiers in Plant Science, 2021, 12, 700651.	3.6	10
13	A small RNA of miR2119b from soybean CMS line acts as a negative regulator of male fertility in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2021, 167, 210-221.	5.8	7
14	Comparative analysis of mitochondrial genomes of soybean cytoplasmic male-sterile lines and their maintainer lines. Functional and Integrative Genomics, 2021, 21, 43-57.	3.5	8
15	Natural variation in the promoter of <i>GsERD15B</i> affects salt tolerance in soybean. Plant Biotechnology Journal, 2021, 19, 1155-1169.	8.3	34
16	Growth period QTLâ€allele constitution of global soybeans and its differential evolution changes in geographic adaptation versus maturity group extension. Plant Journal, 2021, 108, 1624-1643.	5.7	9
17	Two TGA Transcription Factor Members from Hyper-Susceptible Soybean Exhibiting Significant Basal Resistance to Soybean mosaic virus. International Journal of Molecular Sciences, 2021, 22, 11329.	4.1	5
18	Optimizing RNAi-Target by Nicotiana benthamiana-Soybean Mosaic Virus System Drives Broad Resistance to Soybean Mosaic Virus in Soybean. Frontiers in Plant Science, 2021, 12, 739971.	3.6	1

#	Article	IF	CITATIONS
19	Natural variation and selection in <i>GmSWEET39</i> affect soybean seed oil content. New Phytologist, 2020, 225, 1651-1666.	7.3	73
20	Geographic differentiation and phylogeographic relationships among world soybean populations. Crop Journal, 2020, 8, 260-272.	5.2	16
21	Comparative Transcriptomics Analysis and Functional Study Reveal Important Role of High-Temperature Stress Response Gene GmHSFA2 During Flower Bud Development of CMS-Based F1 in Soybean. Frontiers in Plant Science, 2020, 11, 600217.	3.6	20
22	The soybean U-box gene GmPUB6 regulates drought tolerance in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2020, 155, 284-296.	5.8	21
23	Molecular characterization of QTL-allele system for drought tolerance at seedling stage and optimal genotype design using multi-locus multi-allele genome-wide association analysis in a half-sib population of soybean (Glycine max (L.) Merr.). Plant Genetic Resources: Characterisation and Utilisation. 2020. 18. 295-306.	0.8	3
24	Identification of Additive–Epistatic QTLs Conferring Seed Traits in Soybean Using Recombinant Inbred Lines. Frontiers in Plant Science, 2020, 11, 566056.	3.6	10
25	Bi-Phenotypic Trait May Be Conferred by Multiple Alleles in a Germplasm Population. Frontiers in Genetics, 2020, 11, 559.	2.3	4
26	Comparative Transcriptome Analysis of Two Contrasting Soybean Varieties in Response to Aluminum Toxicity. International Journal of Molecular Sciences, 2020, 21, 4316.	4.1	16
27	miR156b from Soybean CMS Line Modulates Floral Organ Development. Journal of Plant Biology, 2020, 63, 141-153.	2.1	16
28	Genetic dynamics of earlier maturity group emergence in south-to-north extension of Northeast China soybeans. Theoretical and Applied Genetics, 2020, 133, 1839-1857.	3.6	12
29	Exploring the QTL–allele constitution of main stem node number and its differentiation among maturity groups in a Northeast China soybean population. Crop Science, 2020, 60, 1223-1238.	1.8	12
30	Double mutation of two homologous genes YL1 and YL2 results in a leaf yellowing phenotype in soybean [Glycine max (L.) Merr]. Plant Molecular Biology, 2020, 103, 527-543.	3.9	11
31	Overexpression of Peroxidase Gene GsPRX9 Confers Salt Tolerance in Soybean. International Journal of Molecular Sciences, 2019, 20, 3745.	4.1	53
32	Molecular mapping of a novel male-sterile gene msNJ in soybean [Glycine max (L.) Merr.]. Plant Reproduction, 2019, 32, 371-380.	2.2	18
33	Deciphering the Genetic Architecture of Plant Height in Soybean Using Two RIL Populations Sharing a Common M8206 Parent. Plants, 2019, 8, 373.	3.5	14
34	Metabolomics Studies on Cytoplasmic Male Sterility during Flower Bud Development in Soybean. International Journal of Molecular Sciences, 2019, 20, 2869.	4.1	28
35	Using the RTM-GWAS procedure to detect the drought tolerance QTL-allele system at the seedling stage under sand culture in a half-sib population of soybean [<i>Glycine max</i> (L.) Merr.]. Canadian Journal of Plant Science, 2019, 99, 801-814.	0.9	7
36	Agrobacterium rhizogenes-induced soybean hairy roots versus Soybean mosaic virus (ARISHR-SMV) is an efficient pathosystem for studying soybean–virus interactions. Plant Methods, 2019, 15, 56.	4.3	7

#	Article	IF	CITATIONS
37	Dynamic Transcriptome Changes Related to Oil Accumulation in Developing Soybean Seeds. International Journal of Molecular Sciences, 2019, 20, 2202.	4.1	26
38	An efficient <i>Agrobacterium</i> -mediated soybean transformation method using green fluorescent protein as a selectable marker. Plant Signaling and Behavior, 2019, 14, 1612682.	2.4	14
39	Differentiation and evolution among geographic and seasonal eco-populations of soybean germplasm in Southern China. Crop and Pasture Science, 2019, 70, 121.	1.5	2
40	Genome-Wide Detection of Major and Epistatic Effect QTLs for Seed Protein and Oil Content in Soybean Under Multiple Environments Using High-Density Bin Map. International Journal of Molecular Sciences, 2019, 20, 979.	4.1	27
41	Genetic Analysis and Gene Mapping for a Short-Petiole Mutant in Soybean (Glycine max (L.) Merr.). Agronomy, 2019, 9, 709.	3.0	5
42	Establishment of Plot-Yield Prediction Models in Soybean Breeding Programs Using UAV-Based Hyperspectral Remote Sensing. Remote Sensing, 2019, 11, 2752.	4.0	44
43	Exploration of miRNA-mediated fertility regulation network of cytoplasmic male sterility during flower bud development in soybean. 3 Biotech, 2019, 9, 22.	2.2	12
44	GmWRKY45 Enhances Tolerance to Phosphate Starvation and Salt Stress, and Changes Fertility in Transgenic Arabidopsis. Frontiers in Plant Science, 2019, 10, 1714.	3.6	25
45	Detecting the QTL-Allele System of Seed Oil Traits Using Multi-Locus Genome-Wide Association Analysis for Population Characterization and Optimal Cross Prediction in Soybean. Frontiers in Plant Science, 2018, 9, 1793.	3.6	19
46	Comparative analysis of circular RNAs between soybean cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B by high-throughput sequencing. BMC Genomics, 2018, 19, 663.	2.8	35
47	Genome-wide analysis of DNA methylation to identify genes and pathways associated with male sterility in soybean. Molecular Breeding, 2018, 38, 1.	2.1	7
48	Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure. Theoretical and Applied Genetics, 2018, 131, 2581-2599.	3.6	31
49	Analysis of QTL–allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Clycine max (L.) Merr.] using a novel GWAS procedure. Planta, 2018, 248, 947-962.	3.2	34
50	Cloning and functional analysis of two GmDeg genes in soybean [Glycine max (L.) Merr.]. Journal of Plant Biology, 2017, 60, 48-56.	2.1	0
51	Development of a cytoplasmic maleâ€sterile line <scp>NJCMS</scp> 4A for hybrid soybean production. Plant Breeding, 2017, 136, 516-525.	1.9	20
52	Transcriptome comparative analysis between the cytoplasmic male sterile line and fertile line in soybean (Glycine max (L.) Merr.). Genes and Genomics, 2017, 39, 1117-1127.	1.4	7
53	Functional Mapping of Multiple Dynamic Traits. Journal of Agricultural, Biological, and Environmental Statistics, 2017, 22, 60-75.	1.4	2
54	Inheritance, fine-mapping, and candidate gene analyses of resistance to soybean mosaic virus strain SC5 in soybean. Molecular Genetics and Genomics, 2017, 292, 811-822.	2.1	35

#	Article	IF	CITATIONS
55	Chicken Toes-Like Leaf and Petalody Flower (CTP) is a novel regulator that controls leaf and flower development in soybean. Journal of Experimental Botany, 2017, 68, 5565-5581.	4.8	7
56	An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theoretical and Applied Genetics, 2017, 130, 2327-2343.	3.6	121
57	Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure. Theoretical and Applied Genetics, 2017, 130, 2297-2314.	3.6	70
58	Characterization of a soybean mosaic virus variant causing different diseases in Glycine max and Nicotiana benthamiana. Archives of Virology, 2017, 162, 549-553.	2.1	10
59	Key biological factors related to outcrossing-productivity of cytoplasmic-nuclear male-sterile lines in soybean [Glycine max (L.) Merr.]. Euphytica, 2017, 213, 1.	1.2	11
60	Optimization of Agrobacterium-Mediated Transformation in Soybean. Frontiers in Plant Science, 2017, 8, 246.	3.6	117
61	Identification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping. Frontiers in Plant Science, 2017, 8, 1222.	3.6	101
62	Genome-wide comparative analysis of DNA methylation between soybean cytoplasmic male-sterile line NJCMS5A and its maintainer NJCMS5B. BMC Genomics, 2017, 18, 596.	2.8	34
63	Genome-wide characterization of the aldehyde dehydrogenase gene superfamily in soybean and its potential role in drought stress response. BMC Genomics, 2017, 18, 518.	2.8	59
64	A high-throughput phenotyping procedure for evaluation of antixenosis against common cutworm at early seedling stage in soybean. Plant Methods, 2017, 13, 66.	4.3	17
65	Genetic variation of world soybean maturity date and geographic distribution of maturity groups. Breeding Science, 2017, 67, 221-232.	1.9	43
66	Evaluation of Reference Genes for Normalization of Gene Expression Using Quantitative RT-PCR under Aluminum, Cadmium, and Heat Stresses in Soybean. PLoS ONE, 2017, 12, e0168965.	2.5	46
67	Identification and Analysis of NaHCO3 Stress Responsive Genes in Wild Soybean (Glycine soja) Roots by RNA-seq. Frontiers in Plant Science, 2016, 7, 1842.	3.6	31
68	Identification of Two Duplicated Loci Controlling a Diseaseâ€like Rugose Leaf Phenotype in Soybean. Crop Science, 2016, 56, 1611-1618.	1.8	4
69	Genome-wide Analysis of Phosphoenolpyruvate Carboxylase Gene Family and Their Response to Abiotic Stresses in Soybean. Scientific Reports, 2016, 6, 38448.	3.3	26
70	Detecting the QTL-allele system of seed isoflavone content in Chinese soybean landrace population for optimal cross design and gene system exploration. Theoretical and Applied Genetics, 2016, 129, 1557-1576.	3.6	70
71	Genome-Wide Identification of Soybean U-Box E3 Ubiquitin Ligases and Roles of GmPUB8 in Negative Regulation of Drought Stress Response in Arabidopsis. Plant and Cell Physiology, 2016, 57, 1189-1209.	3.1	101
72	Soybean SPX1 is an important component of the response to phosphate deficiency for phosphorus homeostasis. Plant Science, 2016, 248, 82-91.	3.6	43

#	Article	IF	CITATIONS
73	Identification of miRNAs and their targets by high-throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean. BMC Genomics, 2016, 17, 24.	2.8	43
74	Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean. BMC Genomics, 2016, 17, 223.	2.8	112
75	Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy. Journal of Proteomics, 2016, 138, 72-82.	2.4	61
76	Fine mapping of the genetic locus <i>L1</i> conferring black pods using a chromosome segment substitution line population of soybean. Plant Breeding, 2015, 134, 437-445.	1.9	23
77	Comparative Transcriptome Analysis between the Cytoplasmic Male Sterile Line NJCMS1A and Its Maintainer NJCMS1B in Soybean (Glycine max (L.) Merr.). PLoS ONE, 2015, 10, e0126771.	2.5	53
78	Establishment of a 100-seed weight quantitative trait locus–allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. Journal of Experimental Botany, 2015, 66, 6311-6325.	4.8	91
79	An environmental differential association analysis of antibiosis to common cutworm in a Chinese soybean germplasm population and optimization of the cross design. Molecular Breeding, 2015, 35, 1.	2.1	7
80	Composite Interval Mapping Based on Lattice Design for Error Control May Increase Power of Quantitative Trait Locus Detection. PLoS ONE, 2015, 10, e0130125.	2.5	3
81	QTL mapping for the number of branches and pods using wild chromosome segment substitution lines in soybean [<i>Glycine max</i> (L.) Merr.]. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, S172-S177.	0.8	15
82	Identification of QTL/segments related to seed-quality traits in G. soja using chromosome segment substitution lines. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, S65-S69.	0.8	7
83	Constitution of resistance to common cutworm in terms of antibiosis and antixenosis in soybean RIL populations. Euphytica, 2014, 196, 137-154.	1.2	21
84	Exploration of presence/absence variation and corresponding polymorphic markers in soybean genome. Journal of Integrative Plant Biology, 2014, 56, 1009-1019.	8.5	21
85	Genome-Wide Identification and Characterization of RBR Ubiquitin Ligase Genes in Soybean. PLoS ONE, 2014, 9, e87282.	2.5	4
86	Overexpression of a Soybean Ariadne-Like Ubiquitin Ligase Gene GmARI1 Enhances Aluminum Tolerance in Arabidopsis. PLoS ONE, 2014, 9, e111120.	2.5	22
87	Association mapping combined with linkage analysis for aluminum tolerance among soybean cultivars released in Yellow and Changjiang River Valleys in China. Theoretical and Applied Genetics, 2013, 126, 1659-1675.	3.6	59
88	Development of a chromosome segment substitution line population with wild soybean (Glycine soja) Tj ETQq	0 0 0 rgBT / 1.2	Overlock 107

89	Identification of <scp>QTL</scp> s for growth period traits in soybean using association analysis and linkage mapping. Plant Breeding, 2013, 132, 317-323.	1.9	11
90	The Mitochondrial Genome of Soybean Reveals Complex Genome Structures and Gene Evolution at Intercellular and Phylogenetic Levels. PLoS ONE, 2013, 8, e56502.	2.5	67

#	Article	IF	CITATIONS
91	Genome-wide genetic dissection of germplasm resources and implications for breeding by design in soybean. Breeding Science, 2012, 61, 495-510.	1.9	42
92	Association analysis of vegetable soybean quality traits with SSR markers. Plant Breeding, 2011, 130, 444-449.	1.9	29
93	A study on relative importance of additive, epistasis and unmapped QTL for Aluminium tolerance at seedling stage in soybean. Plant Breeding, 2011, 130, 551-562.	1.9	35
94	Proteomics study of changes in soybean lines resistant and sensitive to Phytophthora sojae. Proteome Science, 2011, 9, 52.	1.7	41
95	Identification of phosphorus starvation tolerant soybean (Glycine max) germplasms. Frontiers of Agriculture in China, 2010, 4, 272-279.	0.2	7
96	Genetic analysis of tolerance to aluminum toxin at seedling stage in soybean based on major gene plus polygene mixed inheritance model. Frontiers of Agriculture in China, 2010, 4, 265-271.	0.2	0
97	Genetic bases of improved soybean cultivars released from 1923 to 2005 in China—A historical review. Frontiers of Agriculture in China, 2010, 4, 383-393.	0.2	4
98	Polymorphisms of soybean isoflavone synthase and flavanone 3-hydroxylase genes are associated with soybean mosaic virus resistance. Molecular Breeding, 2010, 25, 13-24.	2.1	20
99	Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica, 2009, 167, 313-322.	1.2	87
100	Methodologies for segregation analysis and QTL mapping in plants. Genetica, 2009, 136, 311-318.	1.1	14
101	Somatic embryogenesis and plant regeneration in Chinese soybean (Glycine max (L.) Merr.)—impacts of mannitol, abscisic acid, and explant age. In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 180-188.	2.1	13
102	Genetic diversity and peculiarity of annual wild soybean (G. soja Sieb. et Zucc.) from various eco-regions in China. Theoretical and Applied Genetics, 2009, 119, 371-381.	3.6	92
103	Characterization of O-Acetylserine(Thiol)Lyase-Encoding Genes Reveals Their Distinct but Cooperative Expression in Cysteine Synthesis of Soybean [Glycine max (L.) Merr.]. Plant Molecular Biology Reporter, 2008, 26, 277-291.	1.8	14
104	Molecular cloning and characterization of a LEAFY-like gene highly expressed in developing soybean seeds. Seed Science Research, 2007, 17, 297-302.	1.7	17
105	A Study on Subunit Groups of Soybean Protein Extracts under SDSâ€PAGE. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 793-801.	1.9	40
106	A comparative study on segregation analysis and QTL mapping of quantitative traits in plants—with a case in soybean. Frontiers of Agriculture in China, 2007, 1, 1-7.	0.2	114
107	Identification, inheritance and QTL mapping of root traits related to tolerance to rhizo-spheric stresses in soybean (G. max (L.) Merr.). Frontiers of Agriculture in China, 2007, 1, 119-128.	0.2	22
108	Development of a cytoplasmic-nuclear male-sterile line of soybean. Euphytica, 2002, 124, 85-91.	1.2	27

	Jun	JUNYI GAI		
#	Article		IF	CITATIONS
109	Germplasm Sources, Genetic Richness, and Population Differentiation of Modern Chinese Soybean Cultivars Based on Pedigree Integrated With Genomic-Marker Analysis. Frontiers in Plant Science, 0, 13,		3.6	Ο