Muhammad Tahir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5849021/publications.pdf Version: 2024-02-01

Μιιμαμμα Ταμιρ

#	Article	IF	CITATIONS
1	An effective machine learning-based model for the prediction of protein–protein interaction sites in health systems. Neural Computing and Applications, 2024, 36, 65-75.	5.6	2
2	iEnhancer-Deep: A Computational Predictor for Enhancer Sites and Their Strength Using Deep Learning. Applied Sciences (Switzerland), 2022, 12, 2120.	2.5	11
3	An Effective Deep Learning-Based Architecture for Prediction of N7-Methylguanosine Sites in Health Systems. Electronics (Switzerland), 2022, 11, 1917.	3.1	1
4	Prediction of Piwi-Interacting RNAs and Their Functions via Convolutional Neural Network. IEEE Access, 2021, 9, 54233-54240.	4.2	2
5	Precision Measurement for Industry 4.0 Standards towards Solid Waste Classification through Enhanced Imaging Sensors and Deep Learning Model. Wireless Communications and Mobile Computing, 2021, 2021, 1-10.	1.2	13
6	Identification of prokaryotic promoters and their strength by integrating heterogeneous features. Genomics, 2020, 112, 1396-1403.	2.9	41
7	iRNA-PseTNC: identification of RNA 5-methylcytosine sites using hybrid vector space of pseudo nucleotide composition. Frontiers of Computer Science, 2020, 14, 451-460.	2.4	29
8	Early and accurate detection and diagnosis of heart disease using intelligent computational model. Scientific Reports, 2020, 10, 19747.	3.3	73
9	Prediction of N6-methyladenosine sites using convolution neural network model based on distributed feature representations. Neural Networks, 2020, 129, 385-391.	5.9	27
10	iN6-Methyl (5-step): Identifying RNA N6-methyladenosine sites using deep learning mode via Chou's 5-step rules and Chou's general PseKNC. Chemometrics and Intelligent Laboratory Systems, 2019, 193, 103811.	3.5	83
11	iPseU-CNN: Identifying RNA Pseudouridine Sites Using Convolutional Neural Networks. Molecular Therapy - Nucleic Acids, 2019, 16, 463-470.	5.1	72
12	iRNA-PseKNC(2methyl): Identify RNA 2'-O-methylation sites by convolution neural network and Chou's pseudo components. Journal of Theoretical Biology, 2019, 465, 1-6.	1.7	90
13	iNuc-ext-PseTNC: an efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou's PseAAC to pseudo-tri-nucleotide composition. Molecular Genetics and Genomics, 2019, 294, 199-210.	2.1	52
14	Efficient computational model for classification of protein localization images using Extended Threshold Adjacency Statistics and Support Vector Machines. Computer Methods and Programs in Biomedicine, 2018, 157, 205-215.	4.7	10
15	A Two-Layer Computational Model for Discrimination of Enhancer and Their Types Using Hybrid Features Pace of Pseudo K-Tuple Nucleotide Composition. Arabian Journal for Science and Engineering, 2018, 43, 6719-6727.	3.0	18
16	Multimedia sensor networks: Recent trends, research challenges and future directions. , 2017, , .		1
17	Machine learning based identification of protein–protein interactions using derived features of physiochemical properties and evolutionary profiles. Artificial Intelligence in Medicine, 2017, 78, 61-71.	6.5	35
18	Sequence based predictor for discrimination of enhancer and their types by applying general form of Chou's tripucleotide composition. Computer Methods and Programs in Biomedicine, 2017, 146, 69-75	4.7	47

#	Article	IF	CITATIONS
19	iNuc-STNC: a sequence-based predictor for identification of nucleosome positioning in genomes by extending the concept of SAAC and Chou's PseAAC. Molecular BioSystems, 2016, 12, 2587-2593.	2.9	94

20 Applications, limitations, and improvements in visible light communication systems. , 2015, , .

12