Muhammad Tahir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5849021/publications.pdf

Version: 2024-02-01

759233 888059 20 713 12 17 citations h-index g-index papers 22 22 22 400 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	iNuc-STNC: a sequence-based predictor for identification of nucleosome positioning in genomes by extending the concept of SAAC and Chou's PseAAC. Molecular BioSystems, 2016, 12, 2587-2593.	2.9	94
2	iRNA-PseKNC(2methyl): Identify RNA 2'-O-methylation sites by convolution neural network and Chou's pseudo components. Journal of Theoretical Biology, 2019, 465, 1-6.	1.7	90
3	iN6-Methyl (5-step): Identifying RNA N6-methyladenosine sites using deep learning mode via Chou's 5-step rules and Chou's general PseKNC. Chemometrics and Intelligent Laboratory Systems, 2019, 193, 103811.	3 . 5	83
4	Early and accurate detection and diagnosis of heart disease using intelligent computational model. Scientific Reports, 2020, 10, 19747.	3.3	73
5	iPseU-CNN: Identifying RNA Pseudouridine Sites Using Convolutional Neural Networks. Molecular Therapy - Nucleic Acids, 2019, 16, 463-470.	5.1	72
6	iNuc-ext-PseTNC: an efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou's PseAAC to pseudo-tri-nucleotide composition. Molecular Genetics and Genomics, 2019, 294, 199-210.	2.1	52
7	Sequence based predictor for discrimination of enhancer and their types by applying general form of Chou's trinucleotide composition. Computer Methods and Programs in Biomedicine, 2017, 146, 69-75.	4.7	47
8	Identification of prokaryotic promoters and their strength by integrating heterogeneous features. Genomics, 2020, 112, 1396-1403.	2.9	41
9	Machine learning based identification of protein–protein interactions using derived features of physiochemical properties and evolutionary profiles. Artificial Intelligence in Medicine, 2017, 78, 61-71.	6.5	35
10	iRNA-PseTNC: identification of RNA 5-methylcytosine sites using hybrid vector space of pseudo nucleotide composition. Frontiers of Computer Science, 2020, 14, 451-460.	2.4	29
11	Prediction of N6-methyladenosine sites using convolution neural network model based on distributed feature representations. Neural Networks, 2020, 129, 385-391.	5.9	27
12	A Two-Layer Computational Model for Discrimination of Enhancer and Their Types Using Hybrid Features Pace of Pseudo K-Tuple Nucleotide Composition. Arabian Journal for Science and Engineering, 2018, 43, 6719-6727.	3.0	18
13	Precision Measurement for Industry 4.0 Standards towards Solid Waste Classification through Enhanced Imaging Sensors and Deep Learning Model. Wireless Communications and Mobile Computing, 2021, 2021, 1-10.	1.2	13
14	Applications, limitations, and improvements in visible light communication systems., 2015,,.		12
15	iEnhancer-Deep: A Computational Predictor for Enhancer Sites and Their Strength Using Deep Learning. Applied Sciences (Switzerland), 2022, 12, 2120.	2.5	11
16	Efficient computational model for classification of protein localization images using Extended Threshold Adjacency Statistics and Support Vector Machines. Computer Methods and Programs in Biomedicine, 2018, 157, 205-215.	4.7	10
17	Prediction of Piwi-Interacting RNAs and Their Functions via Convolutional Neural Network. IEEE Access, 2021, 9, 54233-54240.	4.2	2
18	An effective machine learning-based model for the prediction of protein–protein interaction sites in health systems. Neural Computing and Applications, 2024, 36, 65-75.	5 . 6	2

#	Article	IF	CITATIONS
19	Multimedia sensor networks: Recent trends, research challenges and future directions. , 2017, , .		1
20	An Effective Deep Learning-Based Architecture for Prediction of N7-Methylguanosine Sites in Health Systems. Electronics (Switzerland), 2022, 11, 1917.	3.1	1