
Antonella Patti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5848948/publications.pdf Version: 2024-02-01

ΔΝΤΟΝΕΙΙΑ ΡΑΤΤΙ

#	Article	IF	CITATIONS
1	Towards the Sustainability of the Plastic Industry through Biopolymers: Properties and Potential Applications to the Textiles World. Polymers, 2022, 14, 692.	4.5	41
2	Recovery of Waste Material from Biobags: 3D Printing Process and Thermo-Mechanical Characteristics in Comparison to Virgin and Composite Matrices. Polymers, 2022, 14, 1943.	4.5	8
3	Additive Manufacturing Processing of Plastics for Mass Production of Composites Tooling: Technical and Economic Analysis. Macromolecular Symposia, 2021, 395, .	0.7	3
4	Fused Deposition Modelling (FDM): New Standards for Mechanical Characterization. Macromolecular Symposia, 2021, 395, 2000253.	0.7	1
5	Liquid Crystal Display (LCD) Printing: A Novel System forÂPolymer Hybrids Printing. Macromolecular Symposia, 2021, 395, .	0.7	4
6	A Comparative Analysis on the Processing Aspects of Basalt and Glass Fibers Reinforced Composites. Fibers and Polymers, 2021, 22, 1449-1459.	2.1	12
7	Polyurethane Impregnation for Improving the Mechanical and the Water Resistance of Polypropylene-Based Textiles. Materials, 2021, 14, 1951.	2.9	24
8	The universal usefulness of stearic acid as surface modifier: applications to the polymer formulations and composite processing. Journal of Industrial and Engineering Chemistry, 2021, 96, 1-33.	5.8	28
9	Rotational Rheology of Wood Flour Composites Based on Recycled Polyethylene. Polymers, 2021, 13, 2226.	4.5	12
10	Viscoelastic behaviour of highly filled polypropylene with solid and liquid Tin microparticles: influence of the stearic acid additive. Rheologica Acta, 2021, 60, 661-673.	2.4	5
11	Eco-Sustainability of the Textile Production: Waste Recovery and Current Recycling in the Composites World. Polymers, 2021, 13, 134.	4.5	83
12	Assessment of Recycled PLA-Based Filament for 3D Printing. , 2021, 7, .		3
13	The effect of silica/polyurethane waterborne dispersion on the perforating features of impregnated polypropylene-based fabric. Textile Reseach Journal, 2020, 90, 1201-1211.	2.2	6
14	The Puncture and Water Resistance of Polyurethane- Impregnated Fabrics after UV Weathering. Polymers, 2020, 12, 15.	4.5	18
15	Influence of the Processing Conditions on the Mechanical Performance of Sustainable Bio-Based PLA Compounds. Polymers, 2020, 12, 2197.	4.5	17
16	Epoxy Based Blends for Additive Manufacturing by Liquid Crystal Display (LCD) Printing: The Effect of Blending and Dual Curing on Daylight Curable Resins. Polymers, 2020, 12, 1594.	4.5	25
17	Thermal conductivity and dielectric properties of polypropyleneâ€based hybrid compounds containing multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2018, 135, 46470.	2.6	18
18	Effect of waterborne polyurethane on mechanical properties of impregnated fabrics. AIP Conference Proceedings, 2018, , .	0.4	1

ANTONELLA PATTI

#	Article	IF	CITATIONS
19	Influence of filler dispersion and interfacial resistance on thermal conductivity of polypropylene/carbon nanotubes systems. AIP Conference Proceedings, 2017, , .	0.4	5
20	The effect of filler functionalization on dispersion and thermal conductivity of polypropylene/multi wall carbon nanotubes composites. Composites Part B: Engineering, 2016, 94, 350-359.	12.0	65
21	UV treatment for the removal of bromate formed during ozonation of groundwater. Influence of the oxidation process on the removal efficiency. Journal of Environmental Chemical Engineering, 2016, 4, 3293-3302.	6.7	3
22	Thermal conductivity and rheological measurements on hybrid polypropylene-based systems. AIP Conference Proceedings, 2016, , .	0.4	0
23	Dispersion issues and thermal conductivity of polypropylene/multi wall carbon nanotube systems. AIP Conference Proceedings, 2016, , .	0.4	Ο
24	Flexural properties of multi-wall carbon nanotube/polypropylene composites: Experimental investigation and nonlocal modeling. Composite Structures, 2015, 131, 282-289.	5.8	62
25	Dispersion of carbon nanotubes in melt compounded polypropylene based composites investigated by THz spectroscopy. Optics Express, 2015, 23, 18181.	3.4	17
26	Effects of chemical functionalization of multi wall carbon nanotubes on the heat transport behaviour of polypropylene based nanocomposites. , 2014, , .		3
27	Thermal Conductivity of Polypropylene-Based Materials. , 0, , .		17