Halit Cavusoglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5848934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanomaterial sulfonated graphene oxide advances the tolerance against nitrate and ammonium toxicity by regulating chloroplastic redox balance, photochemistry of photosystems and antioxidant capacity in Triticum aestivum. Journal of Hazardous Materials, 2022, 424, 127310.	12.4	10
2	The biphasic responses of nanomaterial fullerene on stomatal movement, water status, chlorophyll a fluorescence transient, radical scavenging system and aquaporin-related gene expression in Zea mays under cobalt stress. Science of the Total Environment, 2022, 826, 154213.	8.0	17
3	The effects of fullerene on photosynthetic apparatus, chloroplastâ€encoded gene expression, and nitrogen assimilation in <i>Zea mays</i> under cobalt stress. Physiologia Plantarum, 2022, 174, .	5.2	6
4	Transition metal Mn/Cu co-doped CdO transparent conductive films: Effect on structural, morphological and optical characteristics. Journal of Alloys and Compounds, 2019, 785, 523-530.	5.5	21
5	Influence of sodium dodecyl sulfate as a surfactant on the microstructural, morphological and optoelectronic characteristics of SILAR deposited CuO thin films. Materials Research Express, 2019, 6, 086403.	1.6	6
6	Evaluating the influence of polyethylene glycol as a surfactant on CdO films grown by SILAR method. Journal of Physics and Chemistry of Solids, 2019, 124, 67-72.	4.0	6
7	Complexing agent triethanolamine mediated synthesis of nanocrystalline CuO thin films at room temperature via SILAR technique. Superlattices and Microstructures, 2019, 128, 37-47.	3.1	17
8	A comparative study on cobalt and aluminum as a dual doping element for CdO films. Ceramics International, 2019, 45, 899-906.	4.8	12
9	Structural, morphological and optical studies of nanostructured cadmium oxide films: the role of pH. Journal of Materials Science: Materials in Electronics, 2018, 29, 12777-12784.	2.2	11
10	Measuring Temperature Change at the Nanometer Scale on Gold Nanoparticles by Using Thermoresponsive PEGMA Polymers. ChemNanoMat, 2017, 3, 496-502.	2.8	5
11	Density functional theory – electron paramagnetic resonance study of gamma-irradiated single crystal of amphi-chloroglyoxime. Radiation Effects and Defects in Solids, 2009, 164, 73-82.	1.2	9
	Influences of sulfonated graphene oxide on gas exchange performance, antioxidant systems and redox		

Influences of sulfonated graphene oxide on gas exchange performance, antioxidant systems and redox states of ascorbate and glutathione in nitrate and/or ammonium stressed-wheat (Triticum aestivum) Tj ETQq0 0 0 rgBT /Over4ock 10 Tf 5

 $\begin{array}{c} G\tilde{A}^{1}\!\!\!\!/4m\tilde{A}^{1}\!\!\!/4\tilde{A}^{2} \text{ Katk} \ddot{A}\pm | \ddot{A}\pm \text{ Bak} \ddot{A}\pm r(II) \text{ Oksit } \ddot{A}^{\circ} \text{ nce Filmlerin } Y\tilde{A}^{1}\!\!\!\!/4zey \text{ Aktif Madde Yard} \ddot{A}\pm m\ddot{A}\pm y| a \text{ SILAR Metoduyla } B\tilde{A}^{1}\!\!\!\!/4y \tilde{A}^{1}\!\!\!/4\overline{I}^{4} \text{ Imesi.} \\ G_{5}^{1} & 2 \end{array} \\ \begin{array}{c} G\tilde{A}^{1}\!\!\!/4m\tilde{A}^{1}\!\!\!/4\tilde{A}^{2} & 2 \end{array} \\ \begin{array}{c} G\tilde{A}^{1}\!\!\!/4m\tilde{A}^{1}\!\!/4\tilde{A}^{2} & 2 \end{array} \\ \begin{array}{c} G\tilde{A}^{1}\!\!/4m\tilde{A}^{1}\!\!/4\tilde{A}^{2} & 2 \end{array} \\ \begin{array}{c} G\tilde{A}^{1}\!\!/4m\tilde{A}^{1}\!\!/4\tilde{A}^{2} & 2 \end{array} \\ \begin{array}{c} G\tilde{A}^{1}\!\!/4m\tilde{A}^{1}\!/4\tilde{A}^{2} & 2 \end{array} \\ \begin{array}{c} G\tilde{A}^{1}\!\!/4m\tilde{A}^{1}\!/4m\tilde{A}^{2}\!/4m\tilde{A}^{2} & 2 \end{array} \end{array} \\ \begin{array}{c} G\tilde{A}^{1}\!/4m\tilde{A}^{1}\!/4m\tilde{A}^{2}\!/4m\tilde$