Saverio Pascazio

List of Publications by Citations

Source: https://exaly.com/author-pdf/5848442/saverio-pascazio-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 4,586 194 37 h-index g-index citations papers 208 5,181 5.58 2.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
194	Quantum Zeno subspaces. <i>Physical Review Letters</i> , 2002 , 89, 080401	7.4	367
193	From the quantum zeno to the inverse quantum zeno effect. <i>Physical Review Letters</i> , 2001 , 86, 2699-70)3 _{7.4}	241
192	Quantum Zeno dynamics: mathematical and physical aspects. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2008 , 41, 493001	2	239
191	Unification of dynamical decoupling and the quantum Zeno effect. Physical Review A, 2004, 69,	2.6	215
190	Control of decoherence: Analysis and comparison of three different strategies. <i>Physical Review A</i> , 2005 , 71,	2.6	163
189	TEMPORAL BEHAVIOR OF QUANTUM MECHANICAL SYSTEMS. <i>International Journal of Modern Physics B</i> , 1996 , 10, 247-295	1.1	160
188	Quantum Zeno dynamics. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2000 , 275, 12-19	2.3	113
187	Maximally multipartite entangled states. <i>Physical Review A</i> , 2008 , 77,	2.6	111
186	Dynamical quantum Zeno effect. <i>Physical Review A</i> , 1994 , 50, 4582-4592	2.6	98
185	Temporal behavior and quantum Zeno time of an excited state of the hydrogen atom. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 1998 , 241, 139-144	2.3	83
184	Phase transitions of bipartite entanglement. <i>Physical Review Letters</i> , 2008 , 101, 050502	7.4	68
183	Wave-function collapse by measurement and its simulation. <i>Physical Review A</i> , 1991 , 44, 39-53	2.6	65
182	Quantum Zeno and inverse quantum Zeno effects. <i>Progress in Optics</i> , 2001 , 147-217	3.4	62
181	Statistical mechanics of the cluster Ising model. <i>Physical Review A</i> , 2011 , 84,	2.6	61
180	Quantum Zeno dynamics of a field in a cavity. <i>Physical Review A</i> , 2012 , 86,	2.6	60
179	Quantum Zeno dynamics and quantum Zeno subspaces. <i>Journal of Physics: Conference Series</i> , 2009 , 196, 012017	0.3	60
178	A Brief History of the GKLS Equation. <i>Open Systems and Information Dynamics</i> , 2017 , 24, 1740001	0.4	59

(2010-2001)

177	Zeno dynamics yields ordinary constraints. <i>Physical Review A</i> , 2001 , 65,	2.6	58
176	Quantum theory of measurement based on the many-Hilbert-space approach. <i>Physics Reports</i> , 1993 , 232, 301-411	27.7	58
175	Quantum Zeno effect with neutron spin. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1993 , 179, 155-160	2.3	58
174	Phase space tweezers for tailoring cavity fields by quantum Zeno dynamics. <i>Physical Review Letters</i> , 2010 , 105, 213601	7.4	54
173	Quantum phase transition between cluster and antiferromagnetic states. <i>Europhysics Letters</i> , 2011 , 95, 50001	1.6	53
172	Long-time memory in non-Markovian evolutions. <i>Physical Review A</i> , 2010 , 81,	2.6	52
171	Probability-density-function characterization of multipartite entanglement. <i>Physical Review A</i> , 2006 , 74,	2.6	51
170	Robust gates for holonomic quantum computation. <i>Physical Review A</i> , 2006 , 73,	2.6	48
169	Bound states and entanglement generation in waveguide quantum electrodynamics. <i>Physical Review A</i> , 2016 , 94,	2.6	47
168	Solvable dynamical model for a quantum measurement process. <i>Physical Review Letters</i> , 1993 , 70, 1-4	7.4	47
167	Understanding the quantum Zeno effect. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1996 , 217, 203-208	2.3	46
166	Discrete Abelian gauge theories for quantum simulations of QED. <i>Journal of Physics A:</i> Mathematical and Theoretical, 2015 , 48, 30FT01	2	45
165	On the quantum Zeno effect. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1995 , 199, 27-32	2.3	44
164	Spontaneous emission and lifetime modification caused by an intense electromagnetic field. <i>Physical Review A</i> , 2000 , 62,	2.6	43
163	On a possible reduction of the interference term due to statistical fluctuations. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1990 , 147, 430-434	2.3	43
162	Tricriticalities and Quantum Phases in Spin-Orbit-Coupled Spin-1 Bose Gases. <i>Physical Review Letters</i> , 2016 , 117, 125301	7.4	42
161	Hindered decay: Quantum Zeno effect through electromagnetic field domination. <i>Physical Review A</i> , 1997 , 56, 25-32	2.6	42
160	Phase transitions and metastability in the distribution of the bipartite entanglement of a large quantum system. <i>Physical Review A</i> , 2010 , 81,	2.6	41

159	Deviations from exponential law and Van Hove's atllimit. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1999 , 271, 133-146	3.3	39
158	Bang-bang control of a qubit coupled to a quantum critical spin bath. <i>Physical Review A</i> , 2008 , 77,	2.6	38
157	Direct experimental evidence of free-fermion antibunching. <i>Physical Review Letters</i> , 2006 , 96, 080402	7.4	35
156	Generalized tomographic maps. <i>Physical Review A</i> , 2008 , 77,	2.6	32
155	Entanglement of two blocks of spins in the critical Ising model. <i>Physical Review A</i> , 2008 , 78,	2.6	32
154	Macroscopic limit of a solvable dynamical model. <i>Physical Review A</i> , 1993 , 48, 1066-1081	2.6	32
153	Hausdorff clustering of financial time series. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2007 , 379, 635-644	3.3	30
152	Quantum Zeno Phenomena: Pulsed versus Continuous Measurement. <i>Fortschritte Der Physik</i> , 2001 , 49, 941	5.7	30
151	Berry phase from a quantum Zeno effect. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1999 , 257, 232-240	2.3	30
150	Measurement-Induced Quantum Diffusion. <i>Physical Review Letters</i> , 1999 , 83, 61-64	7.4	29
149	Real Time Dynamics and Confinement in the Zn Schwinger-Weyl lattice model for 1+1 QED. Quantum - the Open Journal for Quantum Science, 4, 281		29
148	Phase transitions in Zn gauge models: Towards quantum simulations of the Schwinger-Weyl QED. <i>Physical Review D</i> , 2018 , 98,	4.9	29
147	Decoherence and Quantum Measurements 1998 ,		27
146	All You Ever Wanted to Know About the Quantum Zeno Effect in 70 Minutes. <i>Open Systems and Information Dynamics</i> , 2014 , 21, 1440007	0.4	26
145	Multipartite entanglement and frustration. New Journal of Physics, 2010, 12, 025015	2.9	26
144	Time and Bell-type inequalities. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1986 , 118, 47-53	2.3	26
143	Testing of quantum phase in matter-wave optics. <i>Physical Review A</i> , 1999 , 60, 473-479	2.6	23
142	Exponential rise of dynamical complexity in quantum computing through projections. <i>Nature Communications</i> , 2014 , 5, 5173	17.4	22

(2007-2000)

141	Quantum Zeno effect in a probed down-conversion process. Physical Review A, 2000, 62,	2.6	22
140	Classical statistical mechanics approach to multipartite entanglement. <i>Journal of Physics A:</i> Mathematical and Theoretical, 2010 , 43, 225303	2	21
139	Statistical mechanics of multipartite entanglement. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2009 , 42, 055304	2	21
138	A quantum particle in a box with moving walls. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2013 , 46, 365301	2	20
137	Radon transform on the cylinder and tomography of a particle on the circle. <i>Physical Review A</i> , 2007 , 76,	2.6	20
136	Entropy-driven phase transitions of entanglement. <i>Physical Review A</i> , 2013 , 87,	2.6	19
135	Infinitely frequent measurements and quantum Zeno effect. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1998 , 239, 333-338	2.3	19
134	XX model on the circle. European Physical Journal: Special Topics, 2008, 160, 127-138	2.3	19
133	Statistical distribution of the local purity in a large quantum system. <i>Journal of Physics A:</i> Mathematical and Theoretical, 2012 , 45, 015308	2	18
132	General phase spaces: from discrete variables to rotor and continuum limits. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2017 , 50, 504002	2	17
131	Measurement scheme for purity based on two two-body gates. <i>Physical Review A</i> , 2012 , 85,	2.6	17
130	On the assumption of initial factorization in the master equation for weakly coupled systems I: General framework. <i>Annals of Physics</i> , 2007 , 322, 631-656	2.5	16
129	Reflection and transmission in a neutron-spin test of the quantum Zeno effect. <i>Physical Review A</i> , 1999 , 60, 3448-3460	2.6	16
128	Entanglement critical length at the many-body localization transition. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2017 , 2017, 113102	1.9	15
127	Bound states in the continuum for an array of quantum emitters. <i>Physical Review A</i> , 2019 , 100,	2.6	14
126	Experimental Investigation of Quantum Decay at Short, Intermediate, and Long Times via Integrated Photonics. <i>Physical Review Letters</i> , 2019 , 122, 130401	7.4	14
125	Gaussian maximally multipartite-entangled states. Physical Review A, 2009, 80,	2.6	14
124	On the assumption of initial factorization in the master equation for weakly coupled systems II: Solvable models. <i>Annals of Physics</i> , 2007 , 322, 657-676	2.5	14

123	Robustness of raw quantum tomography. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2011 , 375, 861-866	2.3	13
122	Greenberger-Horne-Zeilinger states and few-body Hamiltonians. <i>Physical Review Letters</i> , 2011 , 107, 26	50 5 02	13
121	Hausdorff clustering. <i>Physical Review E</i> , 2008 , 78, 046112	2.4	13
120	CHARACTERIZING AND MEASURING MULTIPARTITE ENTANGLEMENT. <i>International Journal of Quantum Information</i> , 2007 , 05, 97-103	0.8	13
119	Exponential behavior of a quantum system in a macroscopic medium. <i>Physical Review Letters</i> , 1994 , 73, 1063-1066	7.4	13
118	Wave-function-renormalization effects in resonantly enhanced tunneling. <i>Physical Review A</i> , 2012 , 85,	2.6	12
117	Generalized Adiabatic Theorem and Strong-Coupling Limits. <i>Quantum - the Open Journal for Quantum Science</i> ,3, 152		12
116	Optical resolution from Fisher information. European Physical Journal Plus, 2016, 131, 1	3.1	11
115	Dynamical imperfections in quantum computers. <i>Physical Review A</i> , 2005 , 71,	2.6	11
114	Decoherence, dephasing and depolarization. <i>Physica B: Condensed Matter</i> , 1999 , 267-268, 277-284	2.8	11
113	Short-time behavior of the correlation functions for the quantum Langevin equation. <i>Physical Review A</i> , 1996 , 53, 2033-2037	2.6	11
112	A careful estimation of photon rescatterig in atomic-cascade experimental tests of Bell's inequality. <i>Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics</i> , 1985 , 5, 23-39		11
111	Universal control induced by noise. <i>Physical Review A</i> , 2016 , 93,	2.6	10
110	Binary mixtures of condensates in generic confining potentials. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2011 , 44, 505305	2	10
109	Domain wall suppression in trapped mixtures of Bose-Einstein condensates. <i>Physical Review A</i> , 2012 , 86,	2.6	10
108	Control of decoherence: Dynamical decoupling versus quantum Zeno effect: A case study for trapped ions. <i>International Journal of Quantum Chemistry</i> , 2004 , 98, 160-172	2.1	10
107	Two-Level System with a Noisy Hamiltonian. <i>Journal of Superconductivity and Novel Magnetism</i> , 1999 , 12, 843-849		10
106	What is wave-function collapse by measurement?. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1994 , 187, 17-25	2.3	10

105	Superselection rules and fluctuations in the Many-Hilbert-Spaces approach to quantum measurement. <i>Foundations of Physics Letters</i> , 1991 , 4, 203-216		10
104	Loss of quantum-mechanical coherence in a measurement process. <i>Physical Review A</i> , 1992 , 45, 4355-43	6 66	10
103	Anderson transition on the Bethe lattice: an approach with real energies. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2020 , 53, 014003	2	10
102	Long-lived entanglement of two multilevel atoms in a waveguide. <i>Journal of Physics Communications</i> , 2018 , 2, 035006	1.2	9
101	Invariant measures on multimode quantum Gaussian states. <i>Journal of Mathematical Physics</i> , 2012 , 53, 122209	1.2	9
100	Simulations of L [®] y flights. <i>Physica Scripta</i> , 2009 , T135, 014036	2.6	9
99	Zeno dynamics and constraints. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, S492-S50	1	9
98	Van Hove's Itllimit in nonrelativistic and relativistic field-theoretical models. <i>Chaos, Solitons and Fractals</i> , 2001 , 12, 2777-2787	9.3	9
97	Quantum Zeno tomography. <i>Physical Review A</i> , 2002 , 66,	2.6	9
96	Non-Abelian phases from quantum Zeno dynamics. <i>Physical Review A</i> , 2013 , 88,	2.6	8
95	Quantumness and entanglement witnesses. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2012 , 45, 105302	2	8
94	Emergence of a Wiener process as a result of the quantum mechanical interaction with a macroscopic medium. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1997 , 245, 189-211	3.3	8
93	Neutron wave-packet tomography. <i>Physical Review A</i> , 2006 , 73,	2.6	8
92	Multipartite entanglement characterization of a quantum phase transition. <i>Journal of Physics A:</i> Mathematical and Theoretical, 2007 , 40, 8009-8018	2	8
91	Decoherence and dephasing in a quantum measurement process. <i>Physical Review A</i> , 1996 , 54, 1064-108	6 2.6	8
90	Blending two alternative approaches to quantum measurement. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1991 , 156, 386-390	2.3	8
89	Many-Hilbert-spaces approach to the wave-function collapse. <i>Foundations of Physics</i> , 1992 , 22, 451-466	1.2	8
88	On the inversion of the Radon transform: standard versus M 2 approach. <i>Journal of Modern Optics</i> , 2010 , 57, 239-243	1.1	7

87	The Observables of a Dissipative Quantum System. <i>Open Systems and Information Dynamics</i> , 2012 , 19, 1250002	0.4	7
86	Particle tracks and the mechanism of decoherence in a model bubble chamber. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1998 , 250, 230-240	2.3	7
85	Stability and instability in parametric resonance and quantum Zeno effect. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2001 , 279, 117-122	2.3	7
84	Decoherence in neutron interferometry at low transmission probability. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1993 , 173, 87-91	2.3	7
83	Experimental tests of bell inequalities. Are all local models really excluded?. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1985 , 111, 339-342	2.3	7
82	Dynamical algebra of observables in dissipative quantum systems. <i>Journal of Physics A:</i> Mathematical and Theoretical, 2017 , 50, 065301	2	6
81	A dynamical composition law for boundary conditions. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2013 , 46, 102001	2	6
80	Optimization of a neutron-spin test of the quantum Zeno effect. <i>Physical Review A</i> , 2003 , 68,	2.6	6
79	Decoherence and Fluctuations in Quantum Interference Experiments. <i>Fortschritte Der Physik</i> , 2001 , 49, 1033	5.7	6
78	Alternative formulation of the Wigner-Araki-Yanase theorem. <i>Physical Review A</i> , 1995 , 51, 3469-3479	2.6	6
77	Reply to "Comment on 'Wave-function collapse by measurement and its simulation' ". <i>Physical Review A</i> , 1993 , 48, 2499-2501	2.6	6
76	Measurement-theoretical analysis of neutron interference at low transmission probability. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1992 , 167, 435-440	2.3	6
75	On emission lifetimes in atomic cascade tests of the Bell inequality. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1987 , 126, 163-167	2.3	6
74	Can Decay Be Ascribed to Classical Noise?. <i>Open Systems and Information Dynamics</i> , 2017 , 24, 1750001	0.4	5
73	Nonexponential decay of Feshbach molecules. <i>Physical Review A</i> , 2020 , 101,	2.6	5
72	Typical entanglement. European Physical Journal Plus, 2013 , 128, 1	3.1	5
71	Hamiltonian purification. Journal of Mathematical Physics, 2015, 56, 122104	1.2	5
70	Witnessing the quantumness of a single system: From anticommutators to interference and discord. <i>Physical Review A</i> , 2013 , 87,	2.6	5

(2020-2009)

69	Entanglement of electrons field-emitted from a superconductor. <i>Physical Review B</i> , 2009 , 79,	3.3	5
68	Classical to quantum in large-number limit. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2012 , 370, 4810-20	3	5
67	Lateral effects in fermion antibunching. Physical Review A, 2008, 77,	2.6	5
66	Quantum Zeno Subspaces and Decoherence. Journal of the Physical Society of Japan, 2003, 72, 30-33	1.5	5
65	On noise-induced superselection rules. Journal of Modern Optics, 2004, 51, 925-932	1.1	5
64	ON THE SHORT-TIME BEHAVIOR OF QUANTUM MECHANICAL SYSTEMS. <i>Modern Physics Letters A</i> , 1995 , 10, 3103-3111	1.3	5
63	Quantum Zeno Dynamics from General Quantum Operations. <i>Quantum - the Open Journal for Quantum Science</i> ,4, 289		5
62	Photon distribution at the output of a beam splitter for imbalanced input states. <i>Physical Review A</i> , 2016 , 93,	2.6	4
61	Generalized tomographic maps and star-product formalism. <i>Physica Scripta</i> , 2015 , 90, 065101	2.6	4
60	Interference in a two-mode Bose system as a typical phenomenon. <i>Physical Review A</i> , 2014 , 89,	2.6	4
59	Local Hamiltonians for maximally multipartite-entangled states. <i>Physical Review A</i> , 2010 , 82,	2.6	4
58	Further evidence of antibunching of two coherent beams of fermions. <i>Physical Review A</i> , 2011 , 84,	2.6	4
57	Dynamical origin of the quantum Zeno effect. Foundations of Physics, 1997, 27, 1655-1670	1.2	4
56	Robustness of optimal working points for nonadiabatic holonomic quantum computation. <i>Laser Physics</i> , 2006 , 16, 1478-1485	1.2	4
55	Three Different Manifestations of the Quantum Zeno Effect. Lecture Notes in Physics, 2003, 141-156	0.8	4
54	Decoherence versus entropy in neutron interferometry. <i>Physical Review A</i> , 2001 , 63,	2.6	4
53	A coherent understanding of solvable models for quantum measurement processes. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1994 , 192, 169-174	2.3	4
52	Potential energy of complex networks: a quantum mechanical perspective. <i>Scientific Reports</i> , 2020 , 10, 18387	4.9	4

51	Measuring quantumness: from theory to observability in interferometric setups. <i>European Physical Journal D</i> , 2018 , 72, 1	1.3	4
50	Variable Detection Probability Models for Einstein-Podolsky-Rosen-Type Experiments 1988 , 391-411		4
49	Kick and Fix: The Roots of Quantum Control. <i>Proceedings (mdpi)</i> , 2019 , 12, 30	0.3	3
48	Phase diagram of bipartite entanglement. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2019 , 52, 414002	2	3
47	Defining quantumness via the Jordan product. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2014 , 47, 035301	2	3
46	Huygens[principle and Dirac-Weyl equation. European Physical Journal Plus, 2017, 132, 1	3.1	3
45	Split and overlapped binary solitons in optical lattices. <i>Physical Review A</i> , 2015 , 92,	2.6	3
44	Phase randomization and typicality in the interference of two condensates. <i>International Journal of Quantum Information</i> , 2014 , 12, 1560019	0.8	3
43	Generalized quantum tomographic maps. <i>Physica Scripta</i> , 2012 , 85, 065001	2.6	3
42	Quantum Zeno effect in a nonlinear coupler. <i>Optics and Spectroscopy (English Translation of Optika I Spektroskopiya</i>), 2001 , 91, 501-507	0.7	3
41	Decoherence in neutron interferometry. <i>Physica B: Condensed Matter</i> , 2000 , 276-278, 970-972	2.8	3
40	Quantum dephasing by chaos. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1996 , 222, 130-136	2.3	3
39	Correlated photon emission by two excited atoms in a waveguide. <i>Physical Review A</i> , 2018 , 98,	2.6	3
38	Typical observables in a two-mode Bose system. <i>Physical Review A</i> , 2015 , 91,	2.6	2
37	Quantum typicality and initial conditions. <i>Physica Scripta</i> , 2015 , 90, 074057	2.6	2
36	Using a biased qubit to probe complex systems. <i>Physical Review A</i> , 2016 , 94,	2.6	2
35	Generalized product formulas and quantum control. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2019 , 52, 435301	2	2
34	LargeNEpproximated field theory for multipartite entanglement. <i>Physical Review A</i> , 2015 , 92,	2.6	2

33	ENTANGLEMENT FRUSTRATION IN MULTIMODE GAUSSIAN STATES. <i>International Journal of Geometric Methods in Modern Physics</i> , 2012 , 09, 1260022	1.5	2
32	CONTROL OF DECOHERENCE VIA QUANTUM ZENO SUBSPACES. <i>International Journal of Modern Physics B</i> , 2006 , 20, 1408-1420	1.1	2
31	Advanced Neutron Imaging and Sensing. Advances in Imaging and Electron Physics, 2006, 142, 53-157	0.2	2
30	Dissipative behavior of a quantum system interacting with a macroscopic medium. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1996 , 223, 320-326	2.3	2
29	Extension of the Wigner-Araki-Yanase theorem in Ozawa's formulation. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1993 , 173, 92-96	2.3	2
28	QUANTUM ZENO SUBSPACES AND DYNAMICAL SUPERSELECTION RULES 2003,		2
27	Stationary excitation waves and multimerization in arrays of quantum emitters. <i>New Journal of Physics</i> , 2021 , 23, 103033	2.9	2
26	Statistics of orthogonality catastrophe events in localised disordered lattices. <i>New Journal of Physics</i> , 2018 , 20, 073041	2.9	2
25	Characterization of real-world networks through quantum potentials. PLoS ONE, 2021, 16, e0254384	3.7	2
24	Quantum Zeno effect in a model multilevel molecule. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 14875	- 8:6 8	1
23	Zeno Subspaces for Coupled Superconducting Qubits. Foundations of Physics, 2006, 36, 500-511	1.2	1
22	Decoherence, fluctuations and Wigner function in neutron optics. <i>Journal of Optics B: Quantum and Semiclassical Optics</i> , 2003 , 5, S290-S298		1
21	Fractal entropy of a chain of nonlinear oscillators. <i>Physical Review E</i> , 2003 , 68, 026211	2.4	1
20	Quantum Zeno Effect as a Purely Dynamical Processa. <i>Annals of the New York Academy of Sciences</i> , 1995 , 755, 335-352	6.5	1
19	Order Parameter for Quantum Measurements and Related Topics. <i>Annals of the New York Academy of Sciences</i> , 1995 , 755, 534-544	6.5	1
18	Meaning of the decoherence parameter in the many-Hilbert-space approach to quantum measurements. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1993 , 175, 150-156	2.3	1
17	Phase transitions of bipartite entanglement 2008,		1
16	Eternal adiabaticity in quantum evolution. <i>Physical Review A</i> , 2021 , 103,	2.6	1

15	Kolmogorov-Arnold-Moser Stability for Conserved Quantities in Finite-Dimensional Quantum Systems. <i>Physical Review Letters</i> , 2021 , 126, 150401	7.4	1
14	The Legacy of George Sudarshan. <i>Open Systems and Information Dynamics</i> , 2019 , 26, 1950011	0.4	1
13	Light interaction with extended quantum systems in dispersive media. <i>New Journal of Physics</i> , 2020 , 22, 123047	2.9	О
12	Dimensional reduction of electromagnetism. <i>Journal of Mathematical Physics</i> , 2022 , 63, 022902	1.2	O
11	Unearthing wave-function renormalization effects in the time evolution of a BoseEinstein condensate. <i>Physica Scripta</i> , 2013 , T153, 014024	2.6	
10	THE GEOMETRY OF THE QUANTUM ZENO EFFECT. International Journal of Geometric Methods in Modern Physics, 2012 , 09, 1260024	1.5	
9	Hindered decay of an unstable system: A quantum zeno effect 1998 , 51, 577-584		
8	Interference of Mesoscopic Particles: Quantum Classical Transition. <i>Open Systems and Information Dynamics</i> , 2007 , 14, 139-148	0.4	
7	Quantum Zeno Tomography. Fortschritte Der Physik, 2001 , 49, 1071	5.7	
6	Temporal Behavior of Quantum Systems and Quantum Zeno Effect 1998 , 337-344		
5	Coherence vs decoherence: Comparing alternative approaches. <i>New Astronomy Reviews</i> , 1993 , 37, 211	-216	
4	A Criticism of Some Recently Proposed Models That Violate the Bell Inequality 1988 , 141-154		
3	Time and Enhancement: Two Possible Local Explanations for the EPR Puzzle 1989 , 105-114		
2	Quantum Zeno Effect and Dominationlof the Temporal Evolution of Quantum Systems 1997 , 279-287		

Time Symmetry and Quantum Dephasing **1998**, 315-323