Dieter Rautenbach

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/5848207/publications.pdf
Version: 2024-02-01

$2.6 \quad 2$

2 Almost color-balanced perfect matchings in color-balanced complete graphs. Discrete Mathematics, 2022, 345, 112701.
$0.4 \quad 0$

The hull number in the convexity of induced paths of order 3. Theoretical Computer Science, 2022, 906,
$0.5 \quad 1$

4 Algorithmic aspects of broadcast independence. Discrete Applied Mathematics, 2022, 314, 142-149.
$5 \quad$ Acyclic matchings in graphs of bounded maximum degree. Discrete Mathematics, 2022, 345, 112885.

6 On the maximum number of maximum independent sets in connected graphs. Journal of Graph Theory,
$7 \quad$ Bounding and approximating minimum maximal matchings in regular graphs. Discrete Mathematics, 2021, 344, 112243.

8 Cubic graphs with equal independence number and matching number. Discrete Mathematics, 2021, 344, 8112178.
$0.4 \quad 1$

9 Minimum distance-unbalancedness of trees. Journal of Mathematical Chemistry, 2021, 59, 942-950.
0.7

10 Exponential independence in subcubic graphs. Discrete Mathematics, 2021, 344, 112439.
0.4

0

11 Maximally distance-unbalanced trees. Journal of Mathematical Chemistry, 2021, 59, 2261.
0.7

1

12 Uniquely restricted matchings in subcubic graphs without short cycles. Journal of Graph Theory, 2021, 96, 578-593.
0.5

0

13 Constant threshold intersection graphs of orthodox paths in trees. Discrete Applied Mathematics, 2020, 281, 61-68.
0.5

0

14 On the equality of the induced matching number and the uniquely restricted matching number for subcubic graphs. Theoretical Computer Science, 2020, 804, 126-138.

15 Approximating connected safe sets in weighted trees. Discrete Applied Mathematics, 2020, 281, 216-223. 6

16 Linear programming based approximation for unweighted induced matchingsâ€"Breaking the l̂" barrier. Discrete Optimization, 2020, 38, 100593.

```
19 Approximating Maximum Acyclic Matchings by Greedy and Local SearchÂStrategies. Lecture Notes in
    Computer Science, 2020, 542-553.
```

20 Sandwiches missing two ingredients of order four. Annals of Operations Research, 2019, 280, 47-63.
21 On some hard and some tractable cases of the maximum acyclic matching problem. Annals of

Operations Research, 2019, 279, 291-300. | Identifying Codes in the Complementary Prism of Cycles. Electronic Notes in Theoretical Computer |
| :--- |
| Science, 2019, 346, 241-251. |

23 Relating broadcast independence and independence. Discrete Mathematics, 2019, 342, 111589.
$0.4 \quad 4$

Approximating maximum uniquely restricted matchings in bipartite graphs. Discrete Applied
Mathematics, 2019, 267, 30-40.
$0.5 \quad 2$

25 Uniquely restricted matchings in subcubic graphs. Discrete Applied Mathematics, 2019, 262, 189-194.

On some tractable and hard instances for partial incentives and target set selection. Discrete
Dynamic monopolies for interval graphs with bounded thresholds. Discrete Applied Mathematics, $27 \quad$ 2019, 260, 256-261.
\square

30 On matching numbers of tree and bipartite degree sequences. Discrete Mathematics, 2019, 342,
0.4

1687-1695.
. 0
$31 \quad$ Vaccinate your trees!. Theoretical Computer Science, 2019, 772, 46-57.
0.5

3

32 Lower Bounds on the Uniquely Restricted Matching Number. Graphs and Combinatorics, 2019, 35,
0.2

353-361.

33 Forcing brushes. Discrete Applied Mathematics, 2019, 257, 359-360.
$0.5 \quad 2$

34 Upper bounds on the uniquely restricted chromatic index. Journal of Graph Theory, 2019, 91, 251-258.
0.5

2

[^0]0.4

13

$$
\begin{aligned}
& 37 \text { Dominating sets inducing large components in maximal outerplanar graphs. Journal of Graph Theory, } \\
& 2018,88,356-370 \text {. }
\end{aligned}
$$

$39 \quad \begin{aligned} & \text { Graphs in which } \\ & 2018,89,55-63 .\end{aligned}$

On the hardness of finding the geodetic number of a subcubic graph. Information Processing Letters, 2018, 135, 22-27.

```
43 How to determine if a random graph with a fixed degree sequence has a giant component. Probability
Theory and Related Fields, 2018, 170, 263-310.
```

$0.9 \quad 11$

44 Large values of the clustering coefficient. Discrete Mathematics, 2018, 341, 119-125.
$0.4 \quad 3$
$45 \quad$ Bounds on the burning number. Discrete Applied Mathematics, 2018, 235, 16-22.
0.5

24

And/or-convexity: a graph convexity based on processes and deadlock models. Annals of Operations
Research, 2018, 264, 267-286.

Smallest domination number and largest independence number of graphs and forests with given
degree sequence. Journal of Graph Theory, 2018, 88, 131-145.
0.5

4

48 Bipartizing with a Matching. Lecture Notes in Computer Science, 2018, , 198-213.
1.0

0

49 On the Maximum Number of Maximum Independent Sets. Graphs and Combinatorics, 2018, 34, 1729-1740.

0.2

6

50 The cat and the noisy mouse. Discrete Mathematics, 2018, 341, 1032-1035.
$0.4 \quad 1$

> Approximately locating an invisible agent in a graph with relative distance queries. Discrete
> Mathematics, $2018,341,2302-2307$.
$0.4 \quad 1$

A lower bound on the acyclic matching number of subcubic graphs. Discrete Mathematics, 2018, 341,
2353-2358.
0.4

```
5 5 ~ C o m p l e x i t y ~ p r o p e r t i e s ~ o f ~ c o m p l e m e n t a r y ~ p r i s m s . ~ J o u r n a l ~ o f ~ C o m b i n a t o r i a l ~ O p t i m i z a t i o n , ~ 2 0 1 7 , ~ 3 3 , ~
    365-372.
```

Dynamic monopolies for degree proportional thresholds in connected graphs of girth at least five
5 and trees. Theoretical Computer Science, 2017, 667, 93-100.

$0.4 \quad 2$
57 Exponential independence. Discrete Mathematics, 2017, 340, 2650-2658. 2
Extremal Values of the Chromatic Number for a Civen Degree Sequence. Graphs and Combinatorics, 2017, 33, 789-799.

Relating domination, exponential domination, and porous exponential domination. Discrete Optimization, 2017, 23, 81-92.

65 Burning a graph is hard. Discrete Applied Mathematics, 2017, 232, 73-87.
0.5

40

Corrigendum to â€œComplexity analysis of P3-convexity problems on bounded-degree and planar graphsâ€• [Theoret. Comput. Sci. 607 Part 1 (2015) 83â€"95]. Theoretical Computer Science, 2017, 704, 92-93.

67 Optimal Colorings with Rainbow Paths. Graphs and Combinatorics, 2017, 33, 729-734.
0.2

0

68 Bounds on the exponential domination number. Discrete Mathematics, 2017, 340, 494-503.
$\begin{array}{ll}0.4 & 7\end{array}$

```
Intersection Graphs of Orthodox Paths in Trees. Electronic Notes in Discrete Mathematics, 2017, 62,
99-104.
```

0.4

0

The Geodetic Hull Number is Hard for Chordal Graphs. Electronic Notes in Discrete Mathematics, 2017, 62, 291-296.

Extremal values and bounds for the zero forcing number. Discrete Applied Mathematics, 2016, 214,

```
87 Near-linear-time algorithm for the geodetic Radon number ofÂgrids. Discrete Applied Mathematics, 2016,
210, 277-283.

A lower bound on the independence number of a graph in terms of degrees and local clique sizes.
Discrete Applied Mathematics, 2016, 209, 59-67. problems on bounded-degree and planar graphs. Theoretical Computer Science, 2015, 607, 83-95.
Remarks on dynamic monopolies with given average thresholds. Discussiones Mathematicae - Graph
Theory, 2015,35,133.

94 On Graphs with Induced Matching Number Almost Equal to Matching Number. Electronic Notes in

95 Cycles in complementary prisms. Discrete Applied Mathematics, 2015, 193, 180-186.

Distance \(k\)-domination, distance \(k\)-guarding, and distance \(k\)-vertex cover of maximal outerplanar graphs. Discrete Applied Mathematics, 2015, 194, 154-159.
0.5

8
103 Two greedy consequences for maximum induced matchings. Theoretical Computer Science, 2015, 602, 32-38.

The CarathÃ ©odory number of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline"
 of chordal graphs. Discrete Applied Mathematics, 2014, 172, 104-108.

111 Domination and total domination in cubic graphs of large girth. Discrete Applied Mathematics, 2014, 174, 128-132.

112 Irreversible conversion processes with deadlines. Journal of Discrete Algorithms, 2014, 26, 69-76.
0.73

Induced matchings in subcubic graphs without short cycles. Discrete Mathematics, 2014, 315-316,
\(165-172\).
\(0.4 \quad 15\)

Independent domination in subcubic bipartite graphs of girth at least six. Discrete Applied
Mathematics, 2014, 162, 399-403.
\(0.5 \quad 10\)

115 Graphs of interval count two with a given partition. Information Processing Letters, 2014, 114, 542-546.
0.43

116 Transversals of Longest Paths and Cycles. SIAM Journal on Discrete Mathematics, 2014, 28, 335-341.
\(0.4 \quad 18\)

117 The circumference of the square of a connected graph. Combinatorica, 2014, 34, 547-559.
0.6

0

118 Recognizing some complementary products. Theoretical Computer Science, 2014, 521, 1-7.
0.5

12

119 On defensive alliances and strong global offensive alliances. Discrete Applied Mathematics, 2014, 163,
136-141.
\(0.5 \quad 4\)

120 Unit Interval Graphs of Open and Closed Intervals. Journal of Graph Theory, 2013, 72, 418-429.
0.5

16

A short proof of the versatile version of Fleischnerâ \(€^{T M} s\) theorem. Discrete Mathematics, 2013, 313,
1929-1933.
\(0.4 \quad 7\)

122 Cycles in squares of trees without generalized claws. Discrete Mathematics, 2013, 313, 1989-1999.
\(0.4 \quad 0\)

Geodetic Number versus Hull Number in \$P_3\$-Convexity. SIAM Journal on Discrete Mathematics, 2013,
27, 717-731.
0.4

15

Algorithmic and structural aspects of the P 3-Radon number. Annals of Operations Research, 2013, 206,
75-91.
2.6

7

125 On the Cycle Spectrum of Cubic Hamiltonian Graphs. Graphs and Combinatorics, 2013, 29, 1067-1076.
```

1 2 7 More fires and more fighters. Discrete Applied Mathematics, 2013, 161, 2410-2419.
On the Carath $\tilde{A} @ o d o r y ~ n u m b e r ~ o f ~ i n t e r v a l ~ a n d ~ g r a p h ~ c o n v e x i t i e s . ~ T h e o r e t i c a l ~ C o m p u t e r ~ S c i e n c e, ~ 2013, ~$ 510, 127-135.
Open packing, total domination, and the <mml:math
xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="sil.gif" display="inline"
overflow="scroll">mml:msubmml:mrowmml:miP<|mml:mi><|mml:mrow>mml:mrowmml:mn3<|mml:min></mml:mrow></m number. Discrete Mathematics, 2013, 313, 992-998.
Extending Bergeâ€ $\mathbb{T M}^{T M}$ and Favaronâ $€^{T M}$ s results about well-covered graphs. Discrete Mathematics, 2013, 313,
0.4 1
132 Ramsey Results for Cycle Spectra. Journal of Graph Theory, 2013, 74, 210-215.$0.5 \quad 1$
133 Integral mixed unit interval graphs. Discrete Applied Mathematics, 2013, 161, 1028-1036. 0.5 4
134 On graphs with maximal independent sets of few sizes, minimum degree at least 2, and girth at least 7 . Discrete Mathematics, 2013, 313, 1630-1635.
135 Polynomial time algorithm for the Radon number of grids in the geodetic convexity. Electronic Notes
137 On the CarathÃ ©odory Number for the Convexity of Paths of Order Three. SIAM Journal on Discrete0.442
Mathematics, 2012, 26, 929-939.
$0.4 \quad 2$
Letters, 2012, 112, 948-952.Characterization and recognition of Radon-independent sets in split graphs. Information Processing
139 Mixed unit interval graphs. Discrete Mathematics, 2012, 312, 3357-3363. 0.4 15
140 On the Radon Number for P 3-Convexity. Lecture Notes in Computer Science, 2012, , 267-278. 1.0 2
141 Cycle spectra of Hamiltonian graphs. Journal of Combinatorial Theory Series B, 2012, 102, 869-874. 0.6 8
142 Reversible iterative graph processes. Theoretical Computer Science, 2012, 460, 16-25.

Pairs of Disjoint Dominating Sets in Connected Cubic Graphs. Graphs and Combinatorics, 2012, 28,
407-421.

An upper bound on the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="sil.gif" display="inline"
 number. Discrete Mathematics, 2012, 312, 2433-2437.

149 Parameterized complexity of the weighted independent set problem beyond graphs of bounded clique
0.7

13 number. Journal of Discrete Algorithms, 2012, 14, 207-213.

150 The potential of greed for independence. Journal of Graph Theory, 2012, 71, 245-259.
151 Integral Mixed Unit Interval Graphs. Lecture Notes in Computer Science, 2012, , 495-506.
157 Strict Betweennesses Induced by Posets as well as by Graphs. Order, 2011, 28, 89-97.
\square

Powers of cycles, powers of paths, and distance graphs. Discrete Applied Mathematics, 2011, 159,
163 Lower bounds on the independence number of certain graphs of odd girth at least seven. Discrete
169 Irreversible conversion of graphs. Theoretical Computer Science, 2011, 412, 3693-3700. 0.5
171 Disjoint dominating and total dominating sets in graphs. Discrete Applied Mathematics, 2010, 158,
173 The repeater tree construction problem. Information Processing Letters, 2010, 110, 1079-1083.0.413
An independent dominating set in the complement of a minimum dominating set of a tree. AppliedMathematics Letters, 2010, 23, 79-81.
Packing disjoint cycles over vertex cuts. Discrete Mathematics, 2010, 310, 1974-1978. 0.4

5

```
181 Edge-Injective and Edge-Surjective Vertex Labellings. SIAM Journal on Discrete Mathematics, 2010, 24,
666-683.
```

$0.4 \quad 2$
182 On the Hull Number of Triangle-Free Graphs. SIAM Journal on Discrete Mathematics, 2010, 23, 2163-2172.
183 Partitioning a graph into a dominating set, a total dominating set, and something else. Discussiones 0.2
Mathematicae - Graph Theory, 2010, 30, 563. 20On the OBDD size for graphs of bounded tree- and clique-width. Discrete Mathematics, 2009, 309,
185 Edge irregular total labellings for graphs of linear size. Discrete Mathematics, 2009, 309, 3786-3792. $0.4 \quad 5$
A forbidden induced subgraph characterization of distance-hereditary 5-leaf powers. Discrete
187 On spanning tree congestion. Discrete Mathematics, 2009, 309, 4653-4655. 0.4 10
188 On packing shortest cycles in graphs. Information Processing Letters, 2009, 109, 816-821.
189 A generalization of Dijkstra's shortest path algorithm with applications to VLSI routing. Journal of
Discrete Algorithms, 2009, 7, 377-390. 0.7 72
An lower bound for computing the sum of even-ranked elements. Information Processing Letters,2009, 109, 955-956.
0.4 0
191 Binary trees with choosable edge lengths. Information Processing Letters, 2009, 109, 1087-1092. 0.4 2
192 Domination in bipartite graphs. Discrete Mathematics, 2009, 309, 113-122. 0.4 7
193
On the existence of edge cuts leaving several large components. Discrete Mathematics, 2009, 309,
1703-1707.
0.4 0
194 Remarks about disjoint dominating sets. Discrete Mathematics, 2009, 309, 6451-6458.0.422
195 overflow="scroll">mml:mi| $\pm</ \mathrm{mml}: \mathrm{mi}\rangle</ \mathrm{mml}$:math >-Domination perfect trees. Discrete Mathematics, 0.4 8
2008, 308, 3187-3198.The independence number in graphs of maximum degree three. Discrete Mathematics, 2008, 308,
197 A class of problems for which
Applications, 2008, 41, 53-60.$0.9 \quad 3$
199 On a conjecture about edge irregular total labelings. Journal of Graph Theory, 2008, 57, 333-343.

0.5

35

200 A conjecture of Borodin and a coloring of GrÃ1/4nbaum. Journal of Graph Theory, 2008, 58, 139-147.
0.5

3
201 A note on domination, girth and minimum degree. Discrete Mathematics, 2008, 308, 2325-2329.

Some remarks on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si7.gif" display="inline"
 Discrete Mathematics, 2008, 308, 5562-5569.

203 On the cost of optimal alphabetic code trees with unequal letter costs. European Journal of Combinatorics, 2008, 29, 386-394.
$0.5 \quad 2$

204 Domination in Cubic Graphs of Large Girth. Lecture Notes in Computer Science, 2008, , 186-190.
$1.0 \quad 3$

205 The delay of circuits whose inputs have specified arrival times. Discrete Applied Mathematics, 2007, 155,
1233-1243.

Reconstructing graphs from size and degree properties of their induced k-subgraphs. Discrete Mathematics, 2007, 307, 694-703.

207 Small step-dominating sets in trees. Discrete Mathematics, 2007, 307, 1212-1215.
0.4

0

208 Dominating and large induced trees in regular graphs. Discrete Mathematics, 2007, 307, 3177-3186.
0.4

6
xmins:xocs= nttp://www.elsevier.com/xmi/xocs/ata xmins:xs= nttp://www.w3.org/zoul/Xivilscnema
xmlns:xsi="http:/|www.w3.org/2001/XMLSchema-instance" $x m / n s=" h t t p: / / w w w . e l s e v i e r . c o m / x m / / j a / d t d "$
209 xmlns:ja="http:/|www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http:/|www.elsevier.com/xml/common/table/dtd"

210 The relative clique-width of a graph. Journal of Combinatorial Theory Series B, 2007, 97, 846-858.
0.6

21

211 On the irregularity of bipartite graphs. Discrete Mathematics, 2007, 307, 1467-1472.
0.4

32

A note on the least number of edges of 3-uniform hypergraphs with upper chromatic number 2.
213 Some remarks about leaf roots. Discrete Mathematics, 2006, 306, 1456-1461. 0.4 25
A Conjecture of Borodin and a Coloring of $\operatorname{Gr} \tilde{A} 1 / 4 n b a u m$. Electronic Notes in Discrete Mathematics,2006, 24, 187-194.

[^1]$0.7 \quad 9$
217 Lower bounds on treespan. Information Processing Letters, 2005, 96, 67-70.
0.4
1

218 A note on the number of matchings and independent sets in trees. Discrete Applied Mathematics, 2005, 145, 483-489.

8

219 Cuts leaving components of given minimum order. Discrete Mathematics, 2005, 292, 55-65.
 0.4
 19

220 On the maximum number of cycles in a Hamiltonian graph. Discrete Mathematics, 2005, 304, 101-107.
$0.4 \quad 7$

221 Competition polysemy. Discrete Mathematics, 2004, 282, 251-255.
$0.4 \quad 0$

222 The solution of two problems on bound polysemy. Discrete Mathematics, 2004, 282, 257-261.225 On the Band-, Tree-, and Clique-Width of Graphs with Bounded Vertex Degree. SIAM Journal onDiscrete Mathematics, 2004, 18, 195-206.
$0.4 \quad 55$
Graphs with small additive stretch number. Discussiones Mathematicae - Graph Theory, 2004, 24, 291.
227 Some remarks on alpha-domination. Discussiones Mathematicae - Graph Theory, 2004, 24, 423.0.2

$$
\begin{aligned}
& 235 \text { A linear-programming approach to the generalized RandiÄ } \ddagger \text { index. Discrete Applied Mathematics, 2003, 128, } \\
& 375-385 \text {. }
\end{aligned}
$$

Closed formulas for the numbers of small independent sets and matchings and an extremal problem for trees. Discrete Applied Mathematics, 2003, 130, 503-512.

Extremal Chemical Trees. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2002, 57, 49-51.

238 How local irregularity gets global in a graph. Journal of Graph Theory, 2002, 41, 18-23.
0.5

3
239 On a Reconstruction Problem of Harary and Manvel. Journal of Combinatorial Theory - Series A, 2002, 0.5 3
240 Reconstructing Infinite Sets of Integers. Journal of Combinatorial Theory - Series A, 2002, 99, 297-306. 0.5 3
241 Wiener index versus maximum degree in trees. Discrete Applied Mathematics, 2002, 122, 127-137.
242 Reconstructing infinite objects. Discrete Mathematics, 2002, 250, 273-279.0.4
243 On Kelly's lemma for infinite sets of integers. Discrete Mathematics, 2002, 245, 279-282.
244 Weighted domination in triangle-free graphs. Discrete Mathematics, 2002, 250, 233-239.0.42
245 On the RandiÄ \ddagger index. Discrete Mathematics, 2002, 257, 29-38. 0.4 55
246 Independent domination and matchings in graphs. Discrete Mathematics, 2002, 259, 325-330.0.46
247 On the reconstruction of the degree sequence. Discrete Mathematics, 2002, 259, 293-300. 0.4 2
248 Reconstruction up to isometries. Discrete Mathematics, 2002, 259, 331-336.0.40
249 The ErdÅ‘s-PÃ3ssa Property for Odd Cycles in Highly Connected Graphs. Combinatorica, 2001, 21, 267-278. 0.6 34
Reconstructing Finite Sets of Points in Rnup to Groups of Isometries. European Journal of Combinatorics, 2001, 22, 1139-1147.
$251 \quad \begin{aligned} & \text { Perfect graphs } \\ & 226,297-311 .\end{aligned}$0.412On vertex orderings and the stability number in triangle-free graphs. Discrete Mathematics, 2001, 231,411-420.

254 On domination and annihilation in graphs with claw-free blocks. Discrete Mathematics, 2001, 231,
$143-151$.
Some results on graph parameters in weighted graphs. Electronic Notes in Discrete Mathematics,
$2000,5,85-88$.0.4

On the differences between the upper irredundance, upper domination and independence numbers of a

[^0]: On the maximum number of minimum dominating sets in forests. Discrete Mathematics, 2019, 342,
 $934-942$.

[^1]: 215 Delay optimization of linear depth boolean circuits with prescribed input arrival times. Journal of
 Discrete Algorithms, 2006, 4, 526-537.

