Dieter Rautenbach

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/5848207/publications.pdf
Version: 2024-02-01

1 Irreversible conversion of graphs. Theoretical Computer Science, 2011, 412, 3693-3700.
0.5
99
$2 \quad$ Wiener index versus maximum degree in trees. Discrete Applied Mathematics, 2002, 122, 127-137.
0.5

93

3 A generalization of Dijkstra's shortest path algorithm with applications to VLSI routing. Journal of
0.7

Discrete Algorithms, 2009, 7, 377-390.

4 Some results on graphs without long induced paths. Information Processing Letters, 2003, 88, 167-171.
0.4

68

5 Some remarks on the geodetic number of a graph. Discrete Mathematics, 2010, 310, 832-837.
$0.4 \quad 56$

6 On the RandiÄ \ddagger index. Discrete Mathematics, 2002, 257, 29-38.
$0.4 \quad 55$

7 On the Band-, Tree-, and Clique-Width of Graphs with Bounded Vertex Degree. SIAM Journal on
$7 \quad$ Discrete Mathematics, 2004, 18, 195-206.
$0.4 \quad 55$

8 On the CarathÃ ©odory Number for the Convexity of Paths of Order Three. SIAM Journal on Discrete
Mathematics, 2012, 26, 929-939.
$0.4 \quad 42$

9 On the Hull Number of Triangle-Free Graphs. SIAM Journal on Discrete Mathematics, 2010, 23, 2163-2172.
0.4

41

10 Burning a graph is hard. Discrete Applied Mathematics, 2017, 232, 73-87.
0.5

40

11 On a conjecture about edge irregular total labelings. Journal of Graph Theory, 2008, 57, 333-343.
0.5

35

12 The ErdÅ‘s-PÃ3sa Property for Odd Cycles in Highly Connected Graphs. Combinatorica, 2001, 21, 267-278.
0.6

34
xmins:xocs= nttp:/|www.elsevier.com/xmı|xocs/ata xmins:xs= nttp:/|www.ws.org/zuטi/xivilschema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd"
13 xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"
1.5

34
xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"

Extremal values and bounds for the zero forcing number. Discrete Applied Mathematics, 2016, 214,
0.5

33

15 On the irregularity of bipartite graphs. Discrete Mathematics, 2007, 307, 1467-1472.
0.4

32

16 Some bounds on the zero forcing number of a graph. Discrete Applied Mathematics, 2018, 236, 203-213.
0.5

28

17 Some remarks about leaf roots. Discrete Mathematics, 2006, 306, 1456-1461.
0.4

25
21 Bounds on the burning number. Discrete Applied Mathematics, 2018, 235, 16-22.

26 Induced Matchings in Subcubic Graphs. SIAM Journal on Discrete Mathematics, 2014, 28, 468-473.

```
An upper bound on the <mml:math xmlns:mml="http:/|www.w3.org/1998/Math/MathML" altimg="sil.gif"
27 display="inline"
27 overflow="scroll"><mml:msub><mml:mrow><mml:mi> P</mml:mi></mml:mrow><mml:mrow><mml:mn> 3</mml:mni></mml:mrow><
    number. Discrete_Mathematics.2012.312, 2433-2437.
```

28 On the geodetic hull number of P-free graphs. Theoretical Computer Science, 2016, 640, 52-60.
29 Partitioning a graph into a dominating set, a total dominating set, and something else. Discussiones Mathematicae - Graph Theory, 2010, 30, 563.
$0.2 \quad 20$30 Cuts leaving components of given minimum order. Discrete Mathematics, 2005, 292, 55-65.0.419
31 Domination in Graphs of Minimum Degree at least Two and Large Girth. Graphs and Combinatorics, 0.2 19
2008, 24, 37-46.0.418
33 The independence number in graphs of maximum degree three. Discrete Mathematics, 2008, 308, 0.4 17
5829-5833.
A linear-programming approach to the generalized RandiÄ \ddagger index. Discrete Applied Mathematics, 2003, 128,problems on bounded-degree and planar graphs. Theoretical Computer Science, 2015, 607, 83-95.
45 A note on the least number of edges of 3-uniform hypergraphs with upper chromatic number 2.Discrete Mathematics, 2006, 306, 670-672.

Discrete Mathematics, 2006, 306, 670-672.
$\begin{array}{ll} & \text { Powers of } \\ 621-627 .\end{array}$0.513
48 Independence, odd girth, and average degree. Journal of Graph Theory, 2011, 67, 96-111.0.513
49 Independence in connected graphs. Discrete Applied Mathematics, 2011, 159, 79-86. 0.5 13Parameterized complexity of the weighted independent set problem beyond graphs of bounded clique
51 The potential of greed for independence. Journal of Graph Theory, 2012, 71, 245-259.

| 61 | Open packing, total domination, and the <mml:math
 xmlns:mml="http:/\|www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline"
 overflow="scroll">mml:msubmml:mrowmml:miP<\|mml:mi><|mml:mrow>mml:mrowmml:mn3<\|mml:min><|mm|:mrow> ${ }^{11}$ <
 number Discrete Mathematics. 2013, 313, 992-998. | | |
| :---: | :---: | :---: | :---: |
| 62 | On the hardness of finding the geodetic number of a subcubic graph. Information Processing Letters, 2018, 135, 22-27. | 0.4 | 11 |
| 63 | How to determine if a random graph with a fixed degree sequence has a giant component. Probability Theory and Related Fields, 2018, 170, 263-310. | 0.9 | 11 |
| 64 | Some remarks on alpha-domination. Discussiones Mathematicae - Graph Theory, 2004, 24, 423. | 0.2 | 11 |
| 65 | A forbidden induced subgraph characterization of distance-hereditary 5 -leaf powers. Discrete Mathematics, 2009, 309, 3843-3852. | 0.4 | 10 |
| 66 | On spanning tree congestion. Discrete Mathematics, 2009, 309, 4653-4655. | 0.4 | 10 |
| 67 | Pairs of Disjoint Dominating Sets and the Minimum Degree of Graphs. Graphs and Combinatorics, 2010 26, 407-424. | 0.2 | 10 |

The CarathÃ ©odory number of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="sil.gif" display="inline"
 of chordal graphs. Discrete Applied Mathematics, 2014, 172, 104-108.

69 Independent domination in subcubic bipartite graphs of girth at least six. Discrete Applied
$0.5 \quad 10$
Mathematics, 2014, 162, 399-403.

$0.5 \quad 9$

Delay optimization of linear depth boolean circuits with prescribed input arrival times. Journal of Discrete Algorithms, 2006, 4, 526-537.
$0.7 \quad 9$
9

75 Finite Sholander trees, trees, and their betweenness. Discrete Mathematics, 2011, 311, 2143-2147. 0.4

76 Cycles in complementary prisms. Discrete Applied Mathematics, 2015, 193, 180-186.
$0.5 \quad 9$
77 Relating domination, exponential domination, and porous exponential domination. Discrete 0.6 9
Optimization, 2017, 23, 81-92.78 A linear vizing-like relation between the size and the domination number of a graph. Journal of Graph$0.5 \quad 8$Theory, 1999, 31, 297-302.
79 On domination and annihilation in graphs with claw-free blocks. Discrete Mathematics, 2001, 231,
143-151. 0.48
80
A note on the number of matchings and independent sets in trees. Discrete Applied Mathematics, 2005, 145, 483-489. 8
<mml:math xmlns:mml="http:/|www.w3.org/1998/Math/MathML" altimg="si7.gif"
81 overflow="scroll">mml:mi| \ddagger </mml:mi></mml:math >-Domination perfect trees. Discrete Mathematics, 0.4 8
2008, 308, 3187-3198.
82 Connectivity and diameter in distance graphs. Networks, 2011, 57, 310-315.1.68
83 Cycle spectra of Hamiltonian graphs. Journal of Combinatorial Theory Series B, 2012, 102, 869-874. 0.6 8
84 Robust recoverable perfect matchings. Networks, 2015, 66, 210-213. 1.6 8
85
Maximum induced matchings close to maximum matchings. Theoretical Computer Science, 2015, 588, 0.5
8graphs. Discrete Applied Mathematics, 2015, 194, 154-159.87 On the maximum number of cycles in a Hamiltonian graph. Discrete Mathematics, 2005, 304, 101-107.$0.4 \quad 7$88 On packing shortest cycles in graphs. Information Processing Letters, 2009, 109, 816-821.

```
91 A short proof of the versatile version of Fleischnerâ€ }\mp@subsup{}{}{TM}\mathrm{ s theorem. Discrete Mathematics, 2013, 313,
1929-1933. 1929-1933.
```

$0.4 \quad 7$
$2.6 \quad 7$
75-91.
92 Algorithmic and structural aspects of the P 3-Radon number. Annals of Operations Research, 2013, 206,
$0.5 \quad 7$
93 New potential functions for greedy independence and coloring. Discrete Applied Mathematics, 2015,

94 Bounds on the exponential domination number. Discrete Mathematics, 2017, 340, 494-503.
$0.4 \quad 7$
95 On some tractable and hard instances for partial incentives and target set selection. Discrete
$0.6 \quad 7$
Optimization, 2019, 34, 100547.
$0.5 \quad 7$

97 Independent domination and matchings in graphs. Discrete Mathematics, 2002, 259, 325-330. 6

98 Extremal Problems for Imbalanced Edges. Graphs and Combinatorics, 2006, 22, 103-111.
0.2

6
99 Dominating and large induced trees in regular graphs. Discrete Mathematics, 2007, 307, 3177-3186.

0.4

6

100 Edge colouring by total labellings. Discrete Mathematics, 2010, 310, 199-205.
0.4

6

101 Feedback vertex sets in cubic multigraphs. Discrete Mathematics, 2015, 338, 2179-2185.
0.4

6

102 Two greedy consequences for maximum induced matchings. Theoretical Computer Science, 2015, 602, 32-38.
0.5

6

103 On the Maximum Number of Maximum Independent Sets. Graphs and Combinatorics, 2018, 34, 1729-1740.
 0.2
 6

A lower bound on the acyclic matching number of subcubic graphs. Discrete Mathematics, 2018, 341,
6
An independent dominating set in the complement of a minimum dominating set of a tree. Applied
Mathematics Letters, 2010, 23, 79-81. $\quad 1.5$

111	Packing disjoint cycles over vertex cuts. Discrete Mathematics, 2010, 310, 1974-1978.	5.4

112 Long cycles and paths in distance graphs. Discrete Mathematics, 2010, 310, 3417-3420.
0.45

113 Reversible iterative graph processes. Theoretical Computer Science, 2012, 460, 16-25.
$\begin{array}{ll}0.5 & 5\end{array}$

114 Unit and single point interval graphs. Discrete Applied Mathematics, 2012, 160, 1601-1609.
$0.5 \quad 5$

115 Remarks on dynamic monopolies with given average thresholds. Discussiones Mathematicae - Graph
Theory, 2015, 35, 133.
$0.2 \quad 5$

116 Equality of distance packing numbers. Discrete Mathematics, 2015, 338, 2374-2377.
$0.4 \quad 5$
117 Averaging 2-rainbow domination and Roman domination. Discrete Applied Mathematics, 2016, 205, 202-207.
118 Dynamic monopolies for degree proportional thresholds in connected graphs of girth at least five and trees. Theoretical Computer Science, 2017, 667, 93-100.

$0.5 \quad 5$
119 Decycling with a matching. Information Processing Letters, 2017, 124, 26-29.
$0.4 \quad 5$
120 Graphs in which some and every maximum matching is uniquely restricted. Journal of Graph Theory, 2018, 89, 55-63.
$0.5 \quad 5$
And/or-convexity: a graph convexity based on processes and deadlock models. Annals of Operations2.65Research, 2018, 264, 267-286.5
122 Uniquely restricted matchings in subcubic graphs. Discrete Applied Mathematics, 2019, 262, 189-194.0.55
123 On the maximum number of maximum independent sets in connected graphs. Journal of Graph Theory, 0.5

5

127	```Some remarks on <mml:math xmlns:mml="http:/\|www.w3.org/1998/Math/MathML" altimg="si7.gif" display="inline" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi> \े></mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi>> 4mml:mo>,</mn Discrete Mathematics, 2008, 308, 5562-5569.```

128 Lower bounds on the independence number of certain graphs of odd girth at least seven. Discrete Applied Mathematics, 2011, 159, 143-151.
$0.5 \quad 4$

129 Average distance and domination number revisited. Discrete Applied Mathematics, 2011, 159, 1180-1182. 0.54

130 On finite convexity spaces induced by sets of paths in graphs. Discrete Mathematics, 2011, 311, 616-619.
$0.4 \quad 4$

131 Greedy colorings of words. Discrete Applied Mathematics, 2012, 160, 1872-1874.
$0.5 \quad 4$

132 Matchings in graphs of odd regularity and girth. Discrete Mathematics, 2013, 313, 2895-2902.
$0.4 \quad 4$

133 Integral mixed unit interval graphs. Discrete Applied Mathematics, 2013, 161, 1028-1036.
135 On defensive alliances and strong global offensive alliances. Discrete Applied Mathematics, 2014, 163, 136-141.
Factor-critical graphs with the minimum number of near-perfect matchings. Discrete Mathematics, 2015, 338, 2318-2319.
$0.4 \quad 4$
137 Smallest domination number and largest independence number of graphs and forests with given0.54
Relating broadcast independence and independence. Discrete Mathematics, 2019, 342, 111589. 0.4 4
139 Minimum distance-unbalancedness of trees. Journal of Mathematical Chemistry, 2021, 59, 942-950. 0.7 4
140 Uniquely Restricted Matchings andÂEdgeÂColorings. Lecture Notes in Computer Science, 2017, , 100-112. 1.0 4
141 Integral Mixed Unit Interval Graphs. Lecture Notes in Computer Science, 2012, , 495-506. 1.0 4142 How local irregularity gets global in a graph. Journal of Graph Theory, 2002, 41, 18-23.
145 The delay of circuits whose inputs have specified arrival times. Discrete Applied Mathematics, 2007, 155,
$1233-1243$.
151 Dominating sets, packings, and the maximum degree. Discrete Mathematics, 2011, 311, 2031-2036.
153 Irreversible conversion processes with deadlines. Journal of Discrete Algorithms, 2014, 26, 69-76.

```
163 Bounding and approximating minimum maximal matchings in regular graphs. Discrete Mathematics,
2021, 344, 112243.
```

165 Approximating Maximum Acyclic Matchings by Greedy and Local SearchÂStrategies. Lecture Notes in
Computer Science, 2020, , 542-553.

```
165 Computer Science, 2020, , 542-553.
169 Weighted domination in triangle-free graphs. Discrete Mathematics, 2002, 250, 233-239.
```

173 A Conjecture of Borodin and a Coloring of GrÃ1/4nbaum. Electronic Notes in Discrete Mathematics,
2006, 24, 187-194.

```
\(0.4 \quad 2\)

174 On the cost of optimal alphabetic code trees with unequal letter costs. European Journal of Combinatorics, 2008, 29, 386-394.
\(0.5 \quad 2\)
\(175 \quad\) Binary trees with choosable edge lengths. Information Processing Letters, 2009, 109, 1087-1092. ..... 0.4 ..... 2
176 Interpolating between bounds on the independence number. Discrete Mathematics, 2010, 310, 2398-2403.
181 On the Radon Number for P 3-Convexity. Lecture Notes in Computer Science, 2012, 267-278. 2

183 On Minimal and Minimum Hull Sets. Electronic Notes in Discrete Mathematics, 2013, 44, 207-212. 2

184 Domination and total domination in cubic graphs of large girth. Discrete Applied Mathematics, 2014,
187 Dominating sets inducing large components. Discrete Mathematics, 2016, 339, 2715-2720.

188 Slash and burn on graphs â€" Firefighting with general weights. Discrete Applied Mathematics, 2016, 210, 4-13.
    Forbidden induced subgraphs for bounded <mml:math
189 xmlns:mml="http:/|www.w3.org/1998/Math/MathML" altimg="si6.gif" display="inline" \(\begin{aligned} & \text { overflow="scroll" ><mml:mi>p</mml:mi></mml:math>-intersection number. Discrete Mathematics, }\end{aligned}\)

199 Lower Bounds on the Uniquely Restricted Matching Number. Graphs and Combinatorics, 2019, 35,
\(353-361\).

200 Forcing brushes. Discrete Applied Mathematics, 2019, 257, 359-360.
0.5

201 Upper bounds on the uniquely restricted chromatic index. Journal of Graph Theory, 2019, 91, 251-258.
0.5

On the computational complexity of the bipartizing matching problem. Annals of Operations Research, 2022, 316, 1235-1256.

On vertex orderings and the stability number in triangle-free graphs. Discrete Mathematics, 2001, 231, 411-420.

\footnotetext{
207 Extending Bergeâ \(€^{T M}\) s and Favaronâ \(€^{T M}\) s results about well-covered graphs. Discrete Mathematics, 2013, 313, 2742-2747.
}
0.4

1

210 Asymptotic surviving rate of trees with multiple fire sources. Discrete Applied Mathematics, 2015, 184, 14-19.
0.5

1

211 Induced 2-regular subgraphs in k-chordal cubic graphs. Discrete Applied Mathematics, 2016, 205, 73-79.
0.5

1

212 Generalized threshold processes on graphs. Theoretical Computer Science, 2017, 689, 27-35.
0.5

The Geodetic Hull Number is Hard for Chordal Graphs. Electronic Notes in Discrete Mathematics, 2017, 62, 291-296.
\(0.4 \quad 1\)

214 The cat and the noisy mouse. Discrete Mathematics, 2018, 341, 1032-1035.
0.4

1

\footnotetext{
215 Approximately locating an invisible agent in a graph with relative distance queries. Discrete
Mathematics, 2018, 341, 2302-2307.
}
\(0.4 \quad 1\)
```

217 Linear programming based approximation for unweighted induced matchingsâ€"Breaking the \hat{"}\mathrm{ " barrier.}
Discrete Optimization, 2020, 38, 100593.
219 Maximally distance-unbalanced trees. Journal of Mathematical Chemistry, 2021, 59, 2261. 1
220 The hull number in the convexity of induced paths of order 3. Theoretical Computer Science, 2022, 906,
221 Some results on graph parameters in weighted graphs. Electronic Notes in Discrete Mathematics, 0.40
222 Reconstructing infinite objects. Discrete Mathematics, 2002, 250, 273-279.
223 Reconstruction up to isometries. Discrete Mathematics, 2002, 259, 331-336.
224 A note on the reconstruction of sets of finite measure. Acta Mathematica Hungarica, 2003, 100, 31-36.
225 Extremal subgraphs with respect to vertex degree bounds. Discrete Mathematics, 2003, 263, 297-303.
227 The solution of two problems on bound polysemy. Discrete Mathematics, 2004, 282, 257-261.0.40
228 The Numbers of Shared Upper Bounds Determine a Poset. Order, 2004, 21, 131-135.0.30
229 Reconstructing graphs from size and degree properties of their induced k-subgraphs. Discrete 0.4 0
230 Small step-dominating sets in trees. Discrete Mathematics, 2007, 307, 1212-1215.
An lower bound for computing the sum of even-ranked elements. Information Processing Letters,
2009, 109, 955-956.0.40
Minimum degree and density of binary sequences. European Journal of Combinatorics, 2010, 31,

235 Cycles in squares of trees without generalized claws. Discrete Mathematics, 2013, 313, 1989-1999.
0.4

0

Polynomial time algorithm for the Radon number of grids in the geodetic convexity. Electronic Notes in Discrete Mathematics, 2013, 44, 371-376.

237 The circumference of the square of a connected graph. Combinatorica, 2014, 34, 547-559.
0.6

0

On Graphs with Induced Matching Number Almost Equal to Matching Number. Electronic Notes in Discrete Mathematics, 2015, 50, 9-14.

239 Cycle Lengths of Hamiltonian \$\$P_ell \$\$ P â," "free Graphs. Graphs and Combinatorics, 2015, 31, 2335-2345. 0.20

240 Badly-covered graphs. Discrete Applied Mathematics, 2015, 182, 99-103.

241 Independence in uniform linear triangle-free hypergraphs. Discrete Mathematics, 2016, 339, 1878-1883.
0.4

Geodetic Convexity Parameters for Graphs with Few Short Induced Paths. Lecture Notes in Computer
Science, 2016, , 25-37.

243 Cycles Avoiding a Color in Colorful Graphs. Journal of Graph Theory, 2016, 81, 342-350.
0.5

0

244 The Cycle Spectrum of Claw-free Hamiltonian Graphs. Graphs and Combinatorics, 2016, 32, 93-101.
0.2

0

245 A lower bound on the independence number of a graph in terms of degrees and local clique sizes.
Discrete Applied Mathematics, 2016, 209, 59-67.
0.5

0

Extremal Values of the Chromatic Number for a Given Degree Sequence. Graphs and Combinatorics,
246 2017, 33, 789-799.
0.2

0

247 Optimal Colorings with Rainbow Paths. Graphs and Combinatorics, 2017, 33, 729-734.
0.2

0

Intersection Graphs of Orthodox Paths in Trees. Electronic Notes in Discrete Mathematics, 2017, 62, 99-104.
0.4

0
0.9

254 Constant threshold intersection graphs of orthodox paths in trees. Discrete Applied Mathematics,

