
Colin V Bonduelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5848083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Star-like poly(peptoid)s with selective antibacterial activity. Polymer Chemistry, 2022, 13, 600-612.	3.9	13
2	Synthetic Polypeptide Polymers as Simplified Analogues of Antimicrobial Peptides. Biomacromolecules, 2021, 22, 57-75.	5.4	66
3	Self-assembled PEGylated amphiphilic polypeptides for gene transfection. Journal of Materials Chemistry B, 2021, 9, 8224-8236.	5.8	7
4	Cyclic Poly(α-peptoid)s by Lithium bis(trimethylsilyl)amide (LiHMDS)-Mediated Ring-Expansion Polymerization: Simple Access to Bioactive Backbones. Journal of the American Chemical Society, 2021, 143, 3697-3702.	13.7	37
5	Aqueous ROPISA of α-amino acid <i>N</i> -carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy. Polymer Chemistry, 2021, 12, 6242-6251.	3.9	27
6	Enhanced Dielectric Relaxation in Self-Organized Layers of Polypeptides Coupled to Platinum Nanoparticles: Temperature Dependence and Effect of Bias Voltage. Journal of Physical Chemistry C, 2021, 125, 22643-22649.	3.1	1
7	Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides. Angewandte Chemie - International Edition, 2020, 59, 622-626.	13.8	129
8	Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides. Angewandte Chemie, 2020, 132, 632-636.	2.0	26
9	Titelbild: Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides (Angew. Chem. 2/2020). Angewandte Chemie, 2020, 132, 517-517.	2.0	0
10	Thermoinduced Crystallization-Driven Self-Assembly of Bioinspired Block Copolymers in Aqueous Solution. Biomacromolecules, 2020, 21, 3411-3419.	5.4	13
11	Bidimensional lamellar assembly by coordination of peptidic homopolymers to platinum nanoparticles. Nature Communications, 2020, 11, 2051.	12.8	15
12	Amphiphilic Nucleobase-Containing Polypeptide Copolymers—Synthesis and Self-Assembly. Polymers, 2020, 12, 1357.	4.5	5
13	New 8-Nitroquinolinone Derivative Displaying Submicromolar <i>in Vitro</i> Activities against Both <i>Trypanosoma brucei</i> and <i>cruzi</i> . ACS Medicinal Chemistry Letters, 2020, 11, 464-472.	2.8	8
14	Combination of photodynamic therapy and gene silencing achieved through the hierarchical self-assembly of porphyrin-siRNA complexes. International Journal of Pharmaceutics, 2019, 569, 118585.	5.2	20
15	Secondary structures of synthetic polypeptide polymers. Polymer Chemistry, 2018, 9, 1517-1529.	3.9	155
16	Antitrypanosomatid Pharmacomodulation at Position 3 of the 8â€Nitroquinolinâ€2(1 <i>H</i>)â€one Scaffold Using Palladiumâ€Catalysed Crossâ€Coupling Reactions. ChemMedChem, 2018, 13, 2217-2228.	3.2	8
17	Ionic Polypeptide Polymers with Unusual β-Sheet Stability. Biomacromolecules, 2018, 19, 4068-4074.	5.4	17
18	Cd ²⁺ coordination: an efficient structuring switch for polypeptide polymers. Polymer Chemistry, 2018, 9, 4100-4107.	3.9	16

COLIN V BONDUELLE

#	Article	IF	CITATIONS
19	Nucleopolypeptides with DNA-triggered α helix-to-β sheet transition. Chemical Communications, 2017, 53, 7501-7504.	4.1	24
20	Smart Poly(imidazoyl-l-lysine): Synthesis and Reversible Helix-to-Coil Transition at Neutral pH. Polymers, 2017, 9, 276.	4.5	12
21	Synthesis of asymmetric guanidiniumphenyl-aminophenyl porphyrins. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1438-1443.	0.8	1
22	Smart metallopoly(<scp> </scp> -glutamic acid) polymers: reversible helix-to-coil transition at neutral pH. RSC Advances, 2016, 6, 84694-84697.	3.6	24
23	Multivalent effect of glycopolypeptide based nanoparticles for galectin binding. Chemical Communications, 2016, 52, 11251-11254.	4.1	49
24	Synthesis, Characterization, and Biological Interaction of Glyconanoparticles with Controlled Branching. Biomacromolecules, 2015, 16, 284-294.	5.4	15
25	Functionalization of Alkyne-Terminated Thermally Hydrocarbonized Porous Silicon Nanoparticles With Targeting Peptides and Antifouling Polymers: Effect on the Human Plasma Protein Adsorption. ACS Applied Materials & Interfaces, 2015, 7, 2006-2015.	8.0	33
26	Synthesis, self-assembly, and degradation of amphiphilic triblock copolymers with fully photodegradable hydrophobic blocks. Canadian Journal of Chemistry, 2015, 93, 126-133.	1.1	9
27	Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI. Nanoscale, 2015, 7, 3754-3767.	5.6	47
28	Synthetic glycopolypeptides: synthesis and self-assembly of poly(γ-benzyl- <scp>l</scp> -glutamate)-glycosylated dendron hybrids. Polymer Chemistry, 2015, 6, 7902-7912.	3.9	16
29	Iminosugar-based glycopolypeptides: glycosidase inhibition with bioinspired glycoprotein analogue micellar self-assemblies. Chemical Communications, 2014, 50, 3350-3352.	4.1	75
30	Synthetic Glycopolypeptides as Biomimetic Analogues of Natural Glycoproteins. Biomacromolecules, 2013, 14, 2973-2983.	5.4	92
31	An oxygenated rubber derivative as a compatibilizer for the preparation of polymer films. Journal of Coatings Technology Research, 2013, 10, 733-742.	2.5	0
32	Synthesis and self-assembly of branched glycopolypeptides: effect of topology and conformation. Faraday Discussions, 2013, 166, 137.	3.2	23
33	Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. Chemical Society Reviews, 2013, 42, 512-529.	38.1	445
34	Bare Histidine–Serine Models: Implication and Impact of Hydrogen Bonding on Nucleophilicity. Chemistry - A European Journal, 2013, 19, 11301-11309.	3.3	5
35	Synthesis and properties of butyl rubber-poly(ethylene oxide) graft copolymers with high PEO content. Journal of Polymer Science Part A, 2013, 51, 3383-3394.	2.3	10
36	Preparation of antibacterial surfaces by hyperthermal hydrogen induced cross-linking of polymer thin films. Journal of Materials Chemistry, 2012, 22, 4881.	6.7	43

COLIN V BONDUELLE

#	Article	IF	CITATIONS
37	Tuning polymersome surfaces: functionalization with dendritic groups. Soft Matter, 2012, 8, 5947.	2.7	16
38	Biologically Active Polymersomes from Amphiphilic Glycopeptides. Journal of the American Chemical Society, 2012, 134, 119-122.	13.7	222
39	Synthesis and self-assembly of "tree-like―amphiphilic glycopolypeptides. Chemical Communications, 2012, 48, 8353.	4.1	64
40	Synthesis and Assembly of Butyl Rubber–Poly(ethylene oxide) Graft Copolymers: From Surface Patterning to Resistance to Protein Adsorption. Macromolecules, 2011, 44, 6405-6415.	4.8	21
41	Preparation of Protein- and Cell-Resistant Surfaces by Hyperthermal Hydrogen Induced Cross-Linking of Poly(ethylene oxide). ACS Applied Materials & amp; Interfaces, 2011, 3, 1740-1748.	8.0	21
42	Dendritic surface functionalization of biodegradable polymer assemblies. Journal of Polymer Science Part A, 2011, 49, 2546-2559.	2.3	18
43	Dendritic Guanidines as Efficient Analogues of Cell Penetrating Peptides. Pharmaceuticals, 2010, 3, 636-666.	3.8	39
44	Patterning of a Butyl Rubberâ^'Poly(ethylene oxide) Graft Copolymer Revealed by Protein Adsorption. Macromolecules, 2010, 43, 9230-9233.	4.8	28
45	Lipase-Catalyzed Ring-Opening Polymerization of the <i>O</i> -Carboxylic Anhydride Derived from Lactic Acid. Biomacromolecules, 2009, 10, 3069-3073.	5.4	48
46	Monomer versus Alcohol Activation in the 4â€Dimethylaminopyridineâ€Catalyzed Ringâ€Opening Polymerization of Lactide and Lactic <i>O</i> â€Carboxylic Anhydride. Chemistry - A European Journal, 2008, 14, 5304-5312.	3.3	108
47	Functionalized polyesters from organocatalyzed ROP of gluOCA, the O-carboxyanhydride derived from glutamic acid. Chemical Communications, 2008, , 1786.	4.1	77
48	Heme alkylation by artemisinin and trioxaquines. Journal of Physical Organic Chemistry, 2006, 19, 562-569.	1.9	18
49	New clerodane diterpenoids from Laetia procera (Poepp.) Eichler (Flacourtiaceae), with antiplasmodial and antileishmanial activities. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5065-5070.	2.2	40