Colin V Bonduelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5848083/publications.pdf

Version: 2024-02-01

49 papers

2,206 citations

304743

22

h-index

214800 47 g-index

52 all docs 52 docs citations

52 times ranked 2816 citing authors

#	Article	IF	CITATIONS
1	Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. Chemical Society Reviews, 2013, 42, 512-529.	38.1	445
2	Biologically Active Polymersomes from Amphiphilic Glycopeptides. Journal of the American Chemical Society, 2012, 134, 119-122.	13.7	222
3	Secondary structures of synthetic polypeptide polymers. Polymer Chemistry, 2018, 9, 1517-1529.	3.9	155
4	Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides. Angewandte Chemie - International Edition, 2020, 59, 622-626.	13.8	129
5	Monomer versus Alcohol Activation in the 4â€Dimethylaminopyridineâ€Catalyzed Ringâ€Opening Polymerization of Lactide and Lactic <i>O</i> â€Carboxylic Anhydride. Chemistry - A European Journal, 2008, 14, 5304-5312.	3.3	108
6	Synthetic Glycopolypeptides as Biomimetic Analogues of Natural Glycoproteins. Biomacromolecules, 2013, 14, 2973-2983.	5.4	92
7	Functionalized polyesters from organocatalyzed ROP of gluOCA, the O-carboxyanhydride derived from glutamic acid. Chemical Communications, 2008, , 1786.	4.1	77
8	Iminosugar-based glycopolypeptides: glycosidase inhibition with bioinspired glycoprotein analogue micellar self-assemblies. Chemical Communications, 2014, 50, 3350-3352.	4.1	75
9	Synthetic Polypeptide Polymers as Simplified Analogues of Antimicrobial Peptides. Biomacromolecules, 2021, 22, 57-75.	5.4	66
10	Synthesis and self-assembly of "tree-like―amphiphilic glycopolypeptides. Chemical Communications, 2012, 48, 8353.	4.1	64
11	Multivalent effect of glycopolypeptide based nanoparticles for galectin binding. Chemical Communications, 2016, 52, 11251-11254.	4.1	49
12	Lipase-Catalyzed Ring-Opening Polymerization of the <i>O </i> - Carboxylic Anhydride Derived from Lactic Acid. Biomacromolecules, 2009, 10, 3069-3073.	5.4	48
13	Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI. Nanoscale, 2015, 7, 3754-3767.	5.6	47
14	Preparation of antibacterial surfaces by hyperthermal hydrogen induced cross-linking of polymer thin films. Journal of Materials Chemistry, 2012, 22, 4881.	6.7	43
15	New clerodane diterpenoids from Laetia procera (Poepp.) Eichler (Flacourtiaceae), with antiplasmodial and antileishmanial activities. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5065-5070.	2.2	40
16	Dendritic Guanidines as Efficient Analogues of Cell Penetrating Peptides. Pharmaceuticals, 2010, 3, 636-666.	3.8	39
17	Cyclic Poly(α-peptoid)s by Lithium bis(trimethylsilyl)amide (LiHMDS)-Mediated Ring-Expansion Polymerization: Simple Access to Bioactive Backbones. Journal of the American Chemical Society, 2021, 143, 3697-3702.	13.7	37
18	Functionalization of Alkyne-Terminated Thermally Hydrocarbonized Porous Silicon Nanoparticles With Targeting Peptides and Antifouling Polymers: Effect on the Human Plasma Protein Adsorption. ACS Applied Materials & Diterfaces, 2015, 7, 2006-2015.	8.0	33

#	Article	IF	CITATIONS
19	Patterning of a Butyl Rubberâ 'Poly(ethylene oxide) Graft Copolymer Revealed by Protein Adsorption. Macromolecules, 2010, 43, 9230-9233.	4.8	28
20	Aqueous ROPISA of \hat{l}_{\pm} -amino acid <i>N</i> -carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy. Polymer Chemistry, 2021, 12, 6242-6251.	3.9	27
21	Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides. Angewandte Chemie, 2020, 132, 632-636.	2.0	26
22	Smart metallopoly(<scp> </scp> -glutamic acid) polymers: reversible helix-to-coil transition at neutral pH. RSC Advances, 2016, 6, 84694-84697.	3.6	24
23	Nucleopolypeptides with DNA-triggered \hat{l}_{\pm} helix-to- \hat{l}_{\pm}^2 sheet transition. Chemical Communications, 2017, 53, 7501-7504.	4.1	24
24	Synthesis and self-assembly of branched glycopolypeptides: effect of topology and conformation. Faraday Discussions, 2013, 166, 137.	3.2	23
25	Synthesis and Assembly of Butyl Rubber–Poly(ethylene oxide) Graft Copolymers: From Surface Patterning to Resistance to Protein Adsorption. Macromolecules, 2011, 44, 6405-6415.	4.8	21
26	Preparation of Protein- and Cell-Resistant Surfaces by Hyperthermal Hydrogen Induced Cross-Linking of Poly(ethylene oxide). ACS Applied Materials & Interfaces, 2011, 3, 1740-1748.	8.0	21
27	Combination of photodynamic therapy and gene silencing achieved through the hierarchical self-assembly of porphyrin-siRNA complexes. International Journal of Pharmaceutics, 2019, 569, 118585.	5.2	20
28	Heme alkylation by artemisinin and trioxaquines. Journal of Physical Organic Chemistry, 2006, 19, 562-569.	1.9	18
29	Dendritic surface functionalization of biodegradable polymer assemblies. Journal of Polymer Science Part A, 2011, 49, 2546-2559.	2.3	18
30	Ionic Polypeptide Polymers with Unusual β-Sheet Stability. Biomacromolecules, 2018, 19, 4068-4074.	5.4	17
31	Tuning polymersome surfaces: functionalization with dendritic groups. Soft Matter, 2012, 8, 5947.	2.7	16
32	Synthetic glycopolypeptides: synthesis and self-assembly of poly(γ-benzyl- <scp>I</scp> -glutamate)-glycosylated dendron hybrids. Polymer Chemistry, 2015, 6, 7902-7912.	3.9	16
33	Cd ²⁺ coordination: an efficient structuring switch for polypeptide polymers. Polymer Chemistry, 2018, 9, 4100-4107.	3.9	16
34	Synthesis, Characterization, and Biological Interaction of Glyconanoparticles with Controlled Branching. Biomacromolecules, 2015, 16, 284-294.	5.4	15
35	Bidimensional lamellar assembly by coordination of peptidic homopolymers to platinum nanoparticles. Nature Communications, 2020, 11, 2051.	12.8	15
36	Thermoinduced Crystallization-Driven Self-Assembly of Bioinspired Block Copolymers in Aqueous Solution. Biomacromolecules, 2020, 21, 3411-3419.	5.4	13

3

#	Article	IF	CITATIONS
37	Star-like poly(peptoid)s with selective antibacterial activity. Polymer Chemistry, 2022, 13, 600-612.	3.9	13
38	Smart Poly(imidazoyl-l-lysine): Synthesis and Reversible Helix-to-Coil Transition at Neutral pH. Polymers, 2017, 9, 276.	4.5	12
39	Synthesis and properties of butyl rubber-poly(ethylene oxide) graft copolymers with high PEO content. Journal of Polymer Science Part A, 2013, 51, 3383-3394.	2.3	10
40	Synthesis, self-assembly, and degradation of amphiphilic triblock copolymers with fully photodegradable hydrophobic blocks. Canadian Journal of Chemistry, 2015, 93, 126-133.	1.1	9
41	Antitrypanosomatid Pharmacomodulation at Position 3 of the 8â€Nitroquinolinâ€2(1 <i>H</i>)â€one Scaffold Using Palladiumâ€Catalysed Crossâ€Coupling Reactions. ChemMedChem, 2018, 13, 2217-2228.	3.2	8
42	New 8-Nitroquinolinone Derivative Displaying Submicromolar <i>i) in Vitro </i> Activities against Both <i>Trypanosoma brucei </i> and <i>cruzi </i> ACS Medicinal Chemistry Letters, 2020, 11, 464-472.	2.8	8
43	Self-assembled PEGylated amphiphilic polypeptides for gene transfection. Journal of Materials Chemistry B, 2021, 9, 8224-8236.	5.8	7
44	Bare Histidine–Serine Models: Implication and Impact of Hydrogen Bonding on Nucleophilicity. Chemistry - A European Journal, 2013, 19, 11301-11309.	3.3	5
45	Amphiphilic Nucleobase-Containing Polypeptide Copolymers—Synthesis and Self-Assembly. Polymers, 2020, 12, 1357.	4.5	5
46	Synthesis of asymmetric guanidiniumphenyl-aminophenyl porphyrins. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1438-1443.	0.8	1
47	Enhanced Dielectric Relaxation in Self-Organized Layers of Polypeptides Coupled to Platinum Nanoparticles: Temperature Dependence and Effect of Bias Voltage. Journal of Physical Chemistry C, 2021, 125, 22643-22649.	3.1	1
48	An oxygenated rubber derivative as a compatibilizer for the preparation of polymer films. Journal of Coatings Technology Research, 2013, 10, 733-742.	2.5	0
49	Titelbild: Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides (Angew. Chem. 2/2020). Angewandte Chemie, 2020, 132, 517-517.	2.0	0