Jean T Greenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5848069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Priming in Systemic Plant Immunity. Science, 2009, 324, 89-91.	6.0	749
2	Programmed cell death in plants: A pathogen-triggered response activated coordinately with multiple defense functions. Cell, 1994, 77, 551-563.	13.5	658
3	The role and regulation of programmed cell death in plant-pathogen interactions. Cellular Microbiology, 2004, 6, 201-211.	1.1	649
4	Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 6181-6185.	3.3	553
5	Programmed cell death: a way of life for plants Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 12094-12097.	3.3	543
6	PROGRAMMED CELL DEATH IN PLANT-PATHOGEN INTERACTIONS. Annual Review of Plant Biology, 1997, 48, 525-545.	14.2	462
7	A Functional Screen for the Type III (Hrp) Secretome of the Plant Pathogen Pseudomonas syringae. Science, 2002, 295, 1722-1726.	6.0	353
8	The Gain-of-Function Arabidopsis acd6 Mutant Reveals Novel Regulation and Function of the Salicylic Acid Signaling Pathway in Controlling Cell Death, Defenses, and Cell Growth. Plant Cell, 1999, 11, 1695-1708.	3.1	337
9	Ceramides modulate programmed cell death in plants. Genes and Development, 2003, 17, 2636-2641.	2.7	321
10	The <i>Arabidopsis-</i> accelerated cell death gene <i>ACD2</i> encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 771-776.	3.3	293
11	Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant Journal, 1993, 4, 327-341.	2.8	273
12	A J Domain Virulence Effector of Pseudomonas syringae Remodels Host Chloroplasts and Suppresses Defenses. Current Biology, 2007, 17, 499-508.	1.8	266
13	The mitochondrion - an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant Journal, 2004, 40, 596-610.	2.8	253
14	A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress. Journal of Bacteriology, 1989, 171, 3933-3939.	1.0	247
15	Arabidopsis ACCELERATED CELL DEATH2 Modulates Programmed Cell Death. Plant Cell, 2006, 18, 397-411.	3.1	221
16	The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Molecular Microbiology, 2006, 62, 26-44.	1.2	212
17	ACD6, a Novel Ankyrin Protein, Is a Regulator and an Effector of Salicylic Acid Signaling in the Arabidopsis Defense Response. Plant Cell, 2003, 15, 2408-2420.	3.1	209
18	Uncoupling Salicylic Acid-Dependent Cell Death and Defense-Related Responses From Disease Resistance in the Arabidopsis Mutant <i>acd5</i> . Genetics, 2000, 156, 341-350.	1.2	200

JEAN T GREENBERG

#	Article	IF	CITATIONS
19	A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant Journal, 2004, 40, 200-212.	2.8	198
20	Identifying type III effectors of plant pathogens and analyzing their interaction with plant cells. Current Opinion in Microbiology, 2003, 6, 20-28.	2.3	174
21	Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. Journal of Bacteriology, 1993, 175, 1026-1031.	1.0	173
22	<i>Pseudomonas syringae</i> hijacks plant stress chaperone machinery for virulence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13177-13182.	3.3	153
23	A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant Journal, 2001, 28, 209-216.	2.8	151
24	Glutathione in Escherichia coli is dispensable for resistance to H2O2 and gamma radiation. Journal of Bacteriology, 1986, 168, 1026-1029.	1.0	149
25	Proposed Guidelines for a Unified Nomenclature and Phylogenetic Analysis of Type III Hop Effector Proteins in the Plant Pathogen Pseudomonas syringae. Molecular Plant-Microbe Interactions, 2005, 18, 275-282.	1.4	148
26	Evolutionary Dynamics of Ralstonia solanacearum. Applied and Environmental Microbiology, 2007, 73, 1225-1238.	1.4	144
27	Functional Analysis of the Type III Effectors AvrRpt2 and AvrRpm1 of Pseudomonas syringae with the Use of a Single-Copy Genomic Integration System. Molecular Plant-Microbe Interactions, 2001, 14, 145-155.	1.4	136
28	The Arabidopsis aberrant growth and death2 mutant shows resistance to Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death. Plant Journal, 2001, 27, 203-211.	2.8	134
29	Differential expression of a senescence-enhanced metallothionein gene inArabidopsisin response to isolates ofPeronospora parasiticaandPseudomonas syringae. Plant Journal, 1998, 16, 209-221.	2.8	130
30	Activation of oxidative stress genes by mutations at the soxQ/cfxB/marA locus of Escherichia coli. Journal of Bacteriology, 1991, 173, 4433-4439.	1.0	129
31	Salicylic Acid Regulates <i>Arabidopsis</i> Microbial Pattern Receptor Kinase Levels and Signaling. Plant Cell, 2014, 26, 4171-4187.	3.1	126
32	Identification of Open Reading Frames Unique to a Select Agent: Ralstonia solanacearum Race 3 Biovar 2. Molecular Plant-Microbe Interactions, 2006, 19, 69-79.	1.4	121
33	Divergent Roles in Arabidopsis thaliana Development and Defense of Two Homologous Genes, ABERRANT GROWTH AND DEATH2 and AGD2-LIKE DEFENSE RESPONSE PROTEIN1, Encoding Novel Aminotransferases. Plant Cell, 2004, 16, 353-366.	3.1	117
34	Arabidopsis AZI1 family proteins mediate signal mobilization for systemic defence priming. Nature Communications, 2015, 6, 7658.	5.8	107
35	HopW1 from Pseudomonas syringae Disrupts the Actin Cytoskeleton to Promote Virulence in Arabidopsis. PLoS Pathogens, 2014, 10, e1004232.	2.1	105
36	Arabidopsis proteins important for modulating defense responses to <i>Pseudomonas syringae</i> that secrete HopW1â€1. Plant Journal, 2008, 54, 452-465.	2.8	100

#	Article	IF	CITATIONS
37	Comparative Large-Scale Analysis of Interactions between Several Crop Species and the Effector Repertoires from Multiple Pathovars of <i>Pseudomonas</i> and <i>Ralstonia</i> Â Â Â. Plant Physiology, 2009, 150, 1733-1749.	2.3	100
38	Signaling Pathways That Regulate the Enhanced Disease Resistance of <i>Arabidopsis</i> " <i>Defense, No Death</i> ―Mutants. Molecular Plant-Microbe Interactions, 2008, 21, 1285-1296.	1.4	92
39	Loss of Ceramide Kinase in <i>Arabidopsis</i> Impairs Defenses and Promotes Ceramide Accumulation and Mitochondrial H ₂ O ₂ Bursts. Plant Cell, 2014, 26, 3449-3467.	3.1	92
40	Acetylation of an NB-LRR Plant Immune-Effector Complex Suppresses Immunity. Cell Reports, 2015, 13, 1670-1682.	2.9	78
41	A Key Role for the <i>Arabidopsis</i> WIN3 Protein in Disease Resistance Triggered by <i>Pseudomonas syringae</i> That Secrete AvrRpt2. Molecular Plant-Microbe Interactions, 2007, 20, 1192-1200.	1.4	75
42	PROHIBITIN3 Forms Complexes with ISOCHORISMATE SYNTHASE1 to Regulate Stress-Induced Salicylic Acid Biosynthesis in Arabidopsis. Plant Physiology, 2018, 176, 2515-2531.	2.3	71
43	Type III Secretion and Effectors Shape the Survival and Growth Pattern of <i>Pseudomonas syringae</i> on Leaf Surfaces Â. Plant Physiology, 2012, 158, 1803-1818.	2.3	70
44	Bioinformatics Correctly Identifies Many Type III Secretion Substrates in the Plant Pathogen Pseudomonas syringae and the Biocontrol Isolate P. fluorescens SBW25. Molecular Plant-Microbe Interactions, 2005, 18, 877-888.	1.4	66
45	Structure-function analysis of the plasma membrane- localized Arabidopsis defense component ACD6. Plant Journal, 2005, 44, 798-809.	2.8	65
46	Genetic analysis of <i>acd6â€1</i> reveals complex defense networks and leads to identification of novel defense genes in Arabidopsis. Plant Journal, 2009, 58, 401-412.	2.8	57
47	ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2015, 28, 455-466.	1.4	56
48	ACCELERATED CELL DEATH 2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis. Plant Journal, 2012, 69, 589-600.	2.8	47
49	Editorial: Salicylic Acid Signaling Networks. Frontiers in Plant Science, 2016, 7, 238.	1.7	44
50	Salicylic Acid Signaling Controls the Maturation and Localization of the Arabidopsis Defense Protein ACCELERATED CELL DEATH6. Molecular Plant, 2014, 7, 1365-1383.	3.9	41
51	Underground Azelaic Acid–Conferred Resistance to <i>Pseudomonas syringae</i> in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2019, 32, 86-94.	1.4	35
52	Flagellin peptide flg22 gains access to long-distance trafficking in Arabidopsis via its receptor, FLS2. Journal of Experimental Botany, 2017, 68, 1769-1783.	2.4	34
53	A Suite of Receptor-Like Kinases and a Putative Mechano-Sensitive Channel Are Involved in Autoimmunity and Plasma Membrane–Based Defenses in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2017, 30, 150-160.	1.4	22
54	Positive and Negative Regulation of Salicylic Acid-Dependent Cell Death and Pathogen Resistance in Arabidopsis lsd6 and ssi1 Mutants. Molecular Plant-Microbe Interactions, 2000, 13, 877-881.	1.4	21

JEAN T GREENBERG

#	Article	IF	CITATIONS
55	A Conserved Cysteine Motif Is Critical for Rice Ceramide Kinase Activity and Function. PLoS ONE, 2011, 6, e18079.	1.1	20
56	ALD1 accumulation in Arabidopsis epidermal plastids confers local and non-autonomous disease resistance. Journal of Experimental Botany, 2021, 72, 2710-2726.	2.4	18
57	"How Do We Do This at a Distance?!―A Descriptive Study of Remote Undergraduate Research Programs during COVID-19. CBE Life Sciences Education, 2022, 21, ar1.	1.1	17
58	Plant pathogenic bacteria target the actin microfilament network involved in the trafficking of disease defense components. Bioarchitecture, 2014, 4, 149-153.	1.5	15
59	Linking pattern recognition and salicylic acid responses in <i>Arabidopsis</i> through ACCELERATED CELL DEATH6 and receptors. Plant Signaling and Behavior, 2015, 10, e1010912.	1.2	13
60	Degrade or Die: A Dual Function for Autophagy in the Plant Immune Response. Developmental Cell, 2005, 8, 799-801.	3.1	12
61	Kinases and protein motifs required for AZI1 plastid localization and trafficking during plant defense induction. Plant Journal, 2021, 105, 1615-1629.	2.8	11
62	An Improved Bioassay to Study Arabidopsis Induced Systemic Resistance (ISR) Against Bacterial Pathogens and Insect Pests. Bio-protocol, 2019, 9, e3236.	0.2	11
63	Alkylation and Oxidative Damages to DNA: Constitutive and Inducible Repair Systems. , 1986, 39, 205-217.		10
64	Pseudomonas syringae effector HopZ3 suppresses the bacterial AvrPto1–tomato PTO immune complex via acetylation. PLoS Pathogens, 2021, 17, e1010017.	2.1	10
65	Friend or foe: Hybrid proline-rich proteins determine how plants respond to beneficial and pathogenic microbes. Plant Physiology, 2022, 190, 860-881.	2.3	10
66	Carbon Nanofiber Arrays: A Novel Tool for Microdelivery of Biomolecules to Plants. PLoS ONE, 2016, 11, e0153621.	1.1	7
67	Whole-Genome Analysis to Identify Type III-Secreted Effectors. , 2007, 354, 19-34.		5
68	The Gain-of-Function Arabidopsis acd6 Mutant Reveals Novel Regulation and Function of the Salicylic Acid Signaling Pathway in Controlling Cell Death, Defenses, and Cell Growth. Plant Cell, 1999, 11, 1695.	3.1	4
69	Simple strategies to enhance discovery of acetylation post-translational modifications by quadrupole-orbitrap LC-MS/MS. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 224-229.	1.1	3
70	Free Radicals and Oxidative Stress. , 2004, , 203-214.		2
71	SGT1b is required for HopZ3-mediated suppression of the epiphytic growth of <i>Pseudomonas syringae</i> on <i>N. benthamiana</i> . Plant Signaling and Behavior, 2012, 7, 1129-1131.	1.2	2
72	The Plant CellIntroduces Breakthrough Reports: A New Forum for Cutting-Edge Plant Research. Plant Cell, 2015, , tpc.15.00862.	3.1	1