
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5847855/publications.pdf Version: 2024-02-01

LUDIEN TEL

#	Article	IF	CITATIONS
1	Understanding natural killer cell biology from a single cell perspective. Cellular Immunology, 2022, 373, 104497.	1.4	12
2	A universal microfluidic approach for integrated analysis of temporal homocellular and heterocellular signaling and migration dynamics. Biosensors and Bioelectronics, 2022, 211, 114353.	5.3	3
3	Phenotypical Diversification of Early IFNα-Producing Human Plasmacytoid Dendritic Cells Using Droplet-Based Microfluidics. Frontiers in Immunology, 2021, 12, 672729.	2.2	11
4	An automated real-time microfluidic platform to probe single NK cell heterogeneity and cytotoxicity on-chip. Scientific Reports, 2021, 11, 17084.	1.6	18
5	Decoding the dynamics of multilayered stochastic antiviral IFN-I responses. Trends in Immunology, 2021, 42, 824-839.	2.9	29
6	Robust Antigen-Specific T Cell Activation within Injectable 3D Synthetic Nanovaccine Depots. ACS Biomaterials Science and Engineering, 2021, 7, 5622-5632.	2.6	4
7	A Pipette-Tip Based Method for Seeding Cells to Droplet Microfluidic Platforms. Journal of Visualized Experiments, 2019, , .	0.2	16
8	Development of Morphologically Discrete PEG–PDLLA Nanotubes for Precision Nanomedicine. Biomacromolecules, 2019, 20, 177-183.	2.6	23
9	Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomaterialia, 2018, 73, 38-51.	4.1	236
10	Synthetic immune niches for cancer immunotherapy. Nature Reviews Immunology, 2018, 18, 212-219.	10.6	141
11	Injectable Biomimetic Hydrogels as Tools for Efficient T Cell Expansion and Delivery. Frontiers in Immunology, 2018, 9, 2798.	2.2	60
12	Integrating Immunology and Microfluidics for Single Immune Cell Analysis. Frontiers in Immunology, 2018, 9, 2373.	2.2	54
13	Cytokineâ€Functionalized Synthetic Dendritic Cells for TÂCell Targeted Immunotherapies. Advanced Therapeutics, 2018, 1, 1800021.	1.6	25
14	Single-cell analysis reveals that stochasticity and paracrine signaling control interferon-alpha production by plasmacytoid dendritic cells. Nature Communications, 2018, 9, 3317.	5.8	116
15	Controlling T-Cell Activation with Synthetic Dendritic Cells Using the Multivalency Effect. ACS Omega, 2017, 2, 937-945.	1.6	48
16	Affinity-Based Purification of Polyisocyanopeptide Bioconjugates. Bioconjugate Chemistry, 2017, 28, 2560-2568.	1.8	11
17	A membrane-anchored aptamer sensor for probing IFNÎ ³ secretion by single cells. Chemical Communications, 2017, 53, 8066-8069.	2.2	58
18	Dendritic Cells as Vaccines: Key Regulators of Tolerance and Immunity. Mediators of Inflammation, 2016, 2016, 1-2.	1.4	4

#	Article	IF	CITATIONS
19	A Comparative Study of the T Cell Stimulatory and Polarizing Capacity of Human Primary Blood Dendritic Cell Subsets. Mediators of Inflammation, 2016, 2016, 1-11.	1.4	57
20	Circulating Apoptotic Microparticles in Systemic Lupus Erythematosus Patients Drive the Activation of Dendritic Cell Subsets and Prime Neutrophils for NETosis. Arthritis and Rheumatology, 2016, 68, 462-472.	2.9	131
21	CLEC12A-Mediated Antigen Uptake and Cross-Presentation by Human Dendritic Cell Subsets Efficiently Boost Tumor-Reactive T Cell Responses. Journal of Immunology, 2016, 197, 2715-2725.	0.4	43
22	Proteomics of Human Dendritic Cell Subsets Reveals Subset-Specific Surface Markers and Differential Inflammasome Function. Cell Reports, 2016, 16, 2953-2966.	2.9	72
23	Preclinical exploration of combining plasmacytoid and myeloid dendritic cell vaccination with BRAF inhibition. Journal of Translational Medicine, 2016, 14, 88.	1.8	10
24	Long-lasting multifunctional CD8 ⁺ T cell responses in end-stage melanoma patients can be induced by dendritic cell vaccination. Oncolmmunology, 2016, 5, e1067745.	2.1	55
25	Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses. Oncolmmunology, 2016, 5, e1068493.	2.1	68
26	Effective Clinical Responses in Metastatic Melanoma Patients after Vaccination with Primary Myeloid Dendritic Cells. Clinical Cancer Research, 2016, 22, 2155-2166.	3.2	211
27	Abstract IA29: Towards synthetic immune cells for cancer immunotherapy. , 2016, , .		0
28	PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by ¹⁹ F MRI. Nanomedicine, 2015, 10, 2339-2348.	1.7	34
29	Selective Expression of the MAPK Phosphatase Dusp9/MKP-4 in Mouse Plasmacytoid Dendritic Cells and Regulation of IFN-1² Production. Journal of Immunology, 2015, 195, 1753-1762.	0.4	8
30	Protamine-stabilized RNA as an ex vivo stimulant of primary human dendritic cell subsets. Cancer Immunology, Immunotherapy, 2015, 64, 1461-1473.	2.0	47
31	Polymer-Based Synthetic Dendritic Cells for Tailoring Robust and Multifunctional T Cell Responses. ACS Chemical Biology, 2015, 10, 485-492.	1.6	43
32	One drop at a time: toward droplet microfluidics as a versatile tool for single-cell analysis. NPG Asia Materials, 2014, 6, e133-e133.	3.8	92
33	Tumoricidal activity of human dendritic cells. Trends in Immunology, 2014, 35, 38-46.	2.9	62
34	Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends in Biotechnology, 2014, 32, 456-465.	4.9	182
35	An electro-coalescence chip for effective emulsion breaking in droplet microfluidics. Lab on A Chip, 2014, 14, 2398-2402.	3.1	29
36	Crosstalk between dendritic cell subsets and implications for dendritic cell-based anticancer immunotherapy. Expert Review of Clinical Immunology, 2014, 10, 915-926.	1.3	22

#	Article	IF	CITATIONS
37	Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab on A Chip, 2013, 13, 4740.	3.1	204
38	Targeting Uptake Receptors on Human Plasmacytoid Dendritic Cells Triggers Antigen Cross-Presentation and Robust Type I IFN Secretion. Journal of Immunology, 2013, 191, 5005-5012.	0.4	98
39	Human plasmacytoid dendritic cells efficiently cross-present exogenous Ags to CD8+ T cells despite lower Ag uptake than myeloid dendritic cell subsets. Blood, 2013, 121, 459-467.	0.6	154
40	Natural Human Plasmacytoid Dendritic Cells Induce Antigen-Specific T-Cell Responses in Melanoma Patients. Cancer Research, 2013, 73, 1063-1075.	0.4	295
41	Antigen cross-presentation by dendritic cell subsets: one general or all sergeants?. Trends in Immunology, 2013, 34, 361-370.	2.9	108
42	CD56 marks human dendritic cell subsets with cytotoxic potential. Oncolmmunology, 2013, 2, e23037.	2.1	29
43	Naturally circulating dendritic cells to vaccinate cancer patients. Oncolmmunology, 2013, 2, e23431.	2.1	27
44	The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3+ myeloid dendritic cells. Blood, 2012, 119, 2284-2292.	0.6	217
45	Deciphering the Message Broadcast by Tumor-Infiltrating Dendritic Cells. American Journal of Pathology, 2012, 181, 733-742.	1.9	66
46	Targeted delivery of CpG ODN to CD32 on human and monkey plasmacytoid dendritic cells augments IFNI± secretion. Immunobiology, 2012, 217, 1017-1024.	0.8	11
47	Human plasmacytoid dendritic cells are equipped with antigen-presenting and tumoricidal capacities. Blood, 2012, 120, 3936-3944.	0.6	80
48	Potential applications for plasmacytoid dendritic cells in cancer immunotherapy. Immunotherapy, 2012, 4, 979-982.	1.0	7
49	The chemotherapeutic drug oxaliplatin differentially affects blood DC function dependent on environmental cues. Cancer Immunology, Immunotherapy, 2012, 61, 1101-1111.	2.0	41
50	Harnessing human plasmacytoid dendritic cells as professional APCs. Cancer Immunology, Immunotherapy, 2012, 61, 1279-1288.	2.0	53
51	Interleukin-15-Induced CD56+ Myeloid Dendritic Cells Combine Potent Tumor Antigen Presentation with Direct Tumoricidal Potential. PLoS ONE, 2012, 7, e51851.	1.1	48
52	Prophylactic vaccines mimic synthetic CpG oligonucleotides in their ability to modulate immune responses. Molecular Immunology, 2011, 48, 810-817.	1.0	24
53	DECâ€205 mediates antigen uptake and presentation by both resting and activated human plasmacytoid dendritic cells. European Journal of Immunology, 2011, 41, 1014-1023.	1.6	63
54	IL-4 and IL-13 Alter Plasmacytoid Dendritic Cell Responsiveness to CpG DNA and Herpes Simplex Virus-1. Journal of Investigative Dermatology, 2011, 131, 900-906.	0.3	19

#	Article	IF	CITATIONS
55	Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy. Cancer Immunology, Immunotherapy, 2010, 59, 1573-1582.	2.0	220
56	Human Plasmacytoid Dendritic Cells Phagocytose, Process, and Present Exogenous Particulate Antigen. Journal of Immunology, 2010, 184, 4276-4283.	0.4	80
57	Cross-Talk between Human Dendritic Cell Subsets Influences Expression of RNA Sensors and Inhibits Picornavirus Infection. Journal of Innate Immunity, 2010, 2, 360-370.	1.8	21