Sateesh Kagale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5847777/publications.pdf Version: 2024-02-01

SATEESH KACALE

#	Article	IF	CITATIONS
1	Evolutionary divergence in embryo and seed coat development of U's Triangle <i>Brassica</i> species illustrated by a spatiotemporal transcriptome atlas. New Phytologist, 2022, 233, 30-51.	7.3	16
2	Advanced domestication: harnessing the precision of gene editing in crop breeding. Plant Biotechnology Journal, 2021, 19, 660-670.	8.3	39
3	CRISPR/Cas9 gene editing in legume crops: Opportunities and challenges. , 2021, 3, e96.		49
4	Legumes: Embracing the genome era. , 2021, 3, e113.		4
5	Genome, Transcriptome, and Germplasm Sequencing Uncovers Functional Variation in the Warm-Season Grain Legume Horsegram Macrotyloma uniflorum (Lam.) Verdc Frontiers in Plant Science, 2021, 12, 758119.	3.6	7
6	Wheat improvement using genome editing technology. BioTechniques, 2021, 71, 577-579.	1.8	0
7	Dominant inhibition of awn development by a putative zincâ€finger transcriptional repressor expressed at the <i>B1</i> locus in wheat. New Phytologist, 2020, 225, 340-355.	7.3	58
8	Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588, 277-283.	27.8	513
9	Drought-Induced Regulatory Cascades and Their Effects on the Nutritional Quality of Developing Potato Tubers. Genes, 2020, 11, 864.	2.4	6
10	A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nature Plants, 2020, 6, 929-941.	9.3	94
11	Characterization of B-Genome Specific High Copy hAT MITE Families in Brassica nigra Genome. Frontiers in Plant Science, 2020, 11, 1104.	3.6	1
12	Assessing Diversity in the <i>Camelina</i> Genus Provides Insights into the Genome Structure of <i>Camelina sativa</i> . G3: Genes, Genomes, Genetics, 2020, 10, 1297-1308.	1.8	33
13	Narrow genetic base shapes population structure and linkage disequilibrium in an industrial oilseed crop, Brassica carinata A. Braun. Scientific Reports, 2020, 10, 12629.	3.3	13
14	Isolating Male Meiocytes from Maize and Wheat for "-Omics―Analyses. Methods in Molecular Biology, 2020, 2061, 237-258.	0.9	4
15	CRISPR/Cas9-Mediated Targeted Mutagenesis in Wheat Doubled Haploids. Methods in Molecular Biology, 2020, 2072, 183-198.	0.9	7
16	WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat. BMC Plant Biology, 2019, 19, 474.	3.6	34
17	GmMYB176 Regulates Multiple Steps in Isoflavonoid Biosynthesis in Soybean. Frontiers in Plant Science, 2019, 10, 562.	3.6	21
18	Genetic diversity and population structure of synthetic hexaploid-derived wheat (Triticum aestivum L.) accessions. Genetic Resources and Crop Evolution, 2019, 66, 335-348.	1.6	10

SATEESH KAGALE

#	Article	IF	CITATIONS
19	Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Scientific Reports, 2018, 8, 6502.	3.3	98
20	MeioCapture: an efficient method for staging and isolation of meiocytes in the prophase I sub-stages of meiosis in wheat. BMC Plant Biology, 2018, 18, 293.	3.6	9
21	A Two-Step Method for Obtaining Highly Pure Cas9 Nuclease for Genome Editing, Biophysical, and Structural Studies. Methods and Protocols, 2018, 1, 17.	2.0	12
22	Drought Response in Wheat: Key Genes and Regulatory Mechanisms Controlling Root System Architecture and Transpiration Efficiency. Frontiers in Chemistry, 2017, 5, 106.	3.6	158
23	The developmental transcriptome atlas of the biofuel crop <i>Camelina sativa</i> . Plant Journal, 2016, 88, 879-894.	5.7	60
24	Analysis of Genotyping-by-Sequencing (GBS) Data. Methods in Molecular Biology, 2016, 1374, 269-284.	0.9	6
25	Comparison of Five Major Trichome Regulatory Genes in Brassica villosa with Orthologues within the Brassicaceae. PLoS ONE, 2014, 9, e95877.	2.5	8
26	An EAR-Dependent Regulatory Module Promotes Male Germ Cell Division and Sperm Fertility in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 2098-2113.	6.6	67
27	Polyploid Evolution of the Brassicaceae during the Cenozoic Era Â. Plant Cell, 2014, 26, 2777-2791.	6.6	165
28	The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nature Communications, 2014, 5, 3706.	12.8	295
29	Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biology, 2014, 15, R77.	9.6	456
30	Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics, 2013, 14, 192.	2.8	115
31	Oilseed Crop Productivity Under Salt Stress. , 2013, , 249-265.		6
32	TMV-Gate vectors: Gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins. Scientific Reports, 2012, 2, 874.	3.3	32
33	Enhancing Productivity and Performance of Oil Seed Crops under Environmental Stresses. , 2012, , 139-161.		3
34	Induction of systemic resistance in rice by leaf extracts of <i>Zizyphus jujuba</i> and <i>Ipomoea carnea</i> against <i>Rhizoctonia solani</i> . Plant Signaling and Behavior, 2011, 6, 919-923.	2.4	30
35	EAR motif-mediated transcriptional repression in plants. Epigenetics, 2011, 6, 141-146.	2.7	390
36	Genome-Wide Analysis of Ethylene-Responsive Element Binding Factor-Associated Amphiphilic Repression Motif-Containing Transcriptional Regulators in Arabidopsis. Plant Physiology, 2010, 152, 1109-1134.	4.8	262

SATEESH KAGALE

#	Article	IF	CITATIONS
37	Small yet effective. Plant Signaling and Behavior, 2010, 5, 691-694.	2.4	52
38	Homologous recombination-mediated cloning and manipulation of genomic DNA regions using Gateway and recombineering systems. BMC Biotechnology, 2008, 8, 88.	3.3	21
39	Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 2006, 225, 353-364.	3.2	446
40	Antimicrobial activity and induction of systemic resistance in rice by leaf extract of Datura metel against Rhizoctonia solani and Xanthomonas oryzae pv. oryzae. Physiological and Molecular Plant Pathology, 2004, 65, 91-100.	2.5	154