George D Mellick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5846983/publications.pdf

Version: 2024-02-01

184 papers	9,355 citations	46918 47 h-index	49773 87 g-index
192	192	192	11485
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	4.9	1,414
2	Collaborative Analysis of \hat{l}_{\pm} -Synuclein Gene Promoter Variability and Parkinson Disease. JAMA - Journal of the American Medical Association, 2006, 296, 661.	3.8	467
3	Prevalence of smell loss in Parkinson's disease – A multicenter study. Parkinsonism and Related Disorders, 2009, 15, 490-494.	1.1	329
4	Anxiety disorders in Parkinson's disease: Prevalence and risk factors. Movement Disorders, 2010, 25, 838-845.	2.2	317
5	Parkinson's disease, pesticides, and glutathione transferase polymorphisms. Lancet, The, 1998, 352, 1344-1346.	6.3	303
6	Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case–control study. Lancet Neurology, The, 2011, 10, 898-908.	4.9	294
7	UCHL1 is a Parkinson's disease susceptibility gene. Annals of Neurology, 2004, 55, 512-521.	2.8	227
8	Mutations in RAB39B Cause X-Linked Intellectual Disability and Early-Onset Parkinson Disease with α-Synuclein Pathology. American Journal of Human Genetics, 2014, 95, 729-735.	2.6	207
9	GSK3B polymorphisms alter transcription and splicing in Parkinson's disease. Annals of Neurology, 2005, 58, 829-839.	2.8	191
10	Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Medicine, 2019, 11, 54.	3.6	191
11	The Vps35 <scp>D620N</scp> Mutation Linked to Parkinson's Disease Disrupts the Cargo Sorting Function of Retromer. Traffic, 2014, 15, 230-244.	1.3	186
12	Disease-specific, neurosphere-derived cells as models for brain disorders. DMM Disease Models and Mechanisms, 2010, 3, 785-798.	1.2	175
13	Tau haplotypes regulate transcription and are associated with Parkinson's disease. Annals of Neurology, 2004, 55, 329-334.	2.8	157
14	Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson's disease in the European population. Human Molecular Genetics, 2011, 20, 615-627.	1.4	155
15	Factors associated with depression in Parkinson's disease. Journal of Affective Disorders, 2011, 132, 82-88.	2.0	142
16	Variance of Gene Expression Identifies Altered Network Constraints in Neurological Disease. PLoS Genetics, 2011, 7, e1002207.	1.5	132
17	Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology, 2012, 79, 659-667.	1.5	119
18	Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism. Brain, 2017, 140, 98-117.	3.7	116

#	Article	IF	CITATIONS
19	A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. Journal of Medical Genetics, 2012, 49, 721-726.	1.5	94
20	Independent and joint effects of the <i>MAPT</i> and <i>SNCA</i> genes in Parkinson disease. Annals of Neurology, 2011, 69, 778-792.	2.8	92
21	Neuroferritinopathy. Parkinsonism and Related Disorders, 2012, 18, 909-915.	1.1	92
22	Analysis of DNA methylation associates the cystine–glutamate antiporter SLC7A11 with risk of Parkinson's disease. Nature Communications, 2020, 11, 1238.	5.8	85
23	Lack of replication of thirteen single-nucleotide polymorphisms implicated in Parkinson's disease: a large-scale international study. Lancet Neurology, The, 2006, 5, 917-923.	4.9	83
24	Moving beyond neurons: the role of cell type-specific gene regulation in Parkinson's disease heritability. Npj Parkinson's Disease, 2019, 5, 6.	2.5	83
25	Movement Disorders, 1999, 14, 219-224.	2.2	82
26	A Cross-Study Transcriptional Analysis of Parkinson's Disease. PLoS ONE, 2009, 4, e4955.	1.1	81
27	NRF2 Activation Restores Disease Related Metabolic Deficiencies in Olfactory Neurosphere-Derived Cells from Patients with Sporadic Parkinson's Disease. PLoS ONE, 2011, 6, e21907.	1.1	81
28	DNA methylation of the <i>MAPT</i> gene in Parkinson's disease cohorts and modulation by vitamin E <i>In Vitro</i> . Movement Disorders, 2014, 29, 1606-1614.	2.2	79
29	Imagining an interdisciplinary doctoral pedagogy. Teaching in Higher Education, 2006, 11, 365-379.	1.7	76
30	GPNN: power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease. BMC Bioinformatics, 2006, 7, 39.	1.2	75
31	Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biology, 2021, 41, 101896.	3.9	75
32	Pooled analysis of iron-related genes in Parkinson's disease: Association with transferrin. Neurobiology of Disease, 2014, 62, 172-178.	2.1	74
33	Nrf2: a modulator of Parkinson's disease?. Journal of Neural Transmission, 2016, 123, 611-619.	1.4	73
34	Case-only study of interactions between genetic polymorphisms of GSTM1, P1, T1 and Z1 and smoking in Parkinson's disease. Neuroscience Letters, 2004, 366, 326-331.	1.0	64
35	Australian data and meta-analysis lend support for alpha-synuclein (NACP-Rep1) as a risk factor for Parkinson's disease. Neuroscience Letters, 2005, 375, 112-116.	1.0	64
36	Malnutrition in a Sample of Community-Dwelling People with Parkinson's Disease. PLoS ONE, 2013, 8, e53290.	1.1	62

#	Article	IF	CITATIONS
37	The Cys282Tyr polymorphism in the HFE gene in Australian Parkinson's disease patients. Neuroscience Letters, 2002, 327, 91-94.	1.0	57
38	Nonsteroidal <scp>Antiâ€inflammatory</scp> Use and <scp><i>LRRK2</i></scp> Parkinson's Disease Penetrance. Movement Disorders, 2020, 35, 1755-1764.	2.2	57
39	The ubiquitin carboxy-terminal hydrolase-L1 gene S18Y polymorphism does not confer protection against idiopathic Parkinson's disease. Neuroscience Letters, 2000, 293, 127-130.	1.0	56
40	Parkinson's disease and family history. Parkinsonism and Related Disorders, 2006, 12, 399-409.	1.1	56
41	Do polymorphisms in the familial Parkinsonism genes contribute to risk for sporadic Parkinson's disease?. Movement Disorders, 2009, 24, 833-838.	2.2	56
42	A large-scale genetic association study to evaluate the contribution of Omi/HtrA2 (PARK13) to Parkinson's disease. Neurobiology of Aging, 2011, 32, 548.e9-548.e18.	1.5	56
43	Global investigation and meta-analysis of the <i>C9orf72</i> (G ₄ C ₂) _n repeat in Parkinson disease. Neurology, 2014, 83, 1906-1913.	1.5	56
44	NMR Fingerprints of the Drugâ€like Naturalâ€Product Space Identify Iotrochotazineâ€A: A Chemical Probe to Study Parkinson's Disease. Angewandte Chemie - International Edition, 2014, 53, 6070-6074.	7.2	56
45	<i>O</i> -GlcNAc Modification Protects against Protein Misfolding and Aggregation in Neurodegenerative Disease. ACS Chemical Neuroscience, 2019, 10, 2209-2221.	1.7	56
46	Age-Environment and Gene-Environment Interactions in the Pathogenesis of Parkinson's Disease. Reviews on Environmental Health, 2002, 17, 51-64.	1.1	55
47	Markers of Disease Severity Are Associated with Malnutrition in Parkinson's Disease. PLoS ONE, 2013, 8, e57986.	1.1	53
48	Further evidence that interactions between CYP2D6 and pesticide exposure increase risk for Parkinson's disease. Annals of Neurology, 2004, 55, 897-897.	2.8	52
49	Screening PARK genes for mutations in early-onset Parkinson's disease patients from Queensland, Australia. Parkinsonism and Related Disorders, 2009, 15, 105-109.	1.1	52
50	Single and dual task gait training in people with Parkinson's Disease: A protocol for a randomised controlled trial. BMC Neurology, 2011, 11, 90.	0.8	49
51	Validity and reliability of the Geriatric Anxiety Inventory in Parkinson's disease* ^{â€} . Australasian Journal on Ageing, 2012, 31, 13-16.	0.4	49
52	Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biology, 2021, 22, 90.	3.8	49
53	Disease-specific anxiety symptomatology in Parkinson's disease. International Psychogeriatrics, 2016, 28, 1153-1163.	0.6	44
54	Identification of genetic modifiers of age-at-onset for familial Parkinson's disease. Human Molecular Genetics, 2016, 25, 3849-3862.	1.4	44

#	Article	IF	Citations
55	Late-onset presentation of pyruvate dehydrogenase deficiency. Movement Disorders, 2004, 19, 727-729.	2.2	43
56	Improved nutritional status is related to improved quality of life in Parkinson's disease. BMC Neurology, 2014, 14, 212.	0.8	43
57	Passive smoking and Parkinson disease. Neurology, 2006, 67, 179-180.	1.5	41
58	Validity of Hamilton depression inventory in Parkinson's disease. Movement Disorders, 2007, 22, 399-403.	2.2	39
59	The protective effect of LRRK2 p.R1398H on risk of Parkinson's disease is independent of MAPT and SNCA variants. Neurobiology of Aging, 2014, 35, 266.e5-266.e14.	1.5	36
60	Paraoxonase polymorphisms, pesticide exposure and Parkinson's disease in a Caucasian population. Journal of Neural Transmission, 2000, 107, 979-983.	1.4	35
61	Prevalence and clinical features of common LRRK2 mutations in Australians with Parkinson's Disease. Movement Disorders, 2007, 22, 982-989.	2.2	34
62	Prevalence of Parkinson's disease in metropolitan and rural Queensland: A general practice survey. Journal of Clinical Neuroscience, 2006, 13, 343-348.	0.8	32
63	Mitochondrial and Clearance Impairment in p. <scp>D620N VPS35</scp> Patientâ€Derived Neurons. Movement Disorders, 2021, 36, 704-715.	2.2	32
64	Surfactant Protein Expression in Human Skin: Evidence and Implications. Journal of Investigative Dermatology, 2007, 127, 381-386.	0.3	31
65	No evidence of increased risk of colorectal cancer in individuals heterozygous for the Cys282Tyr haemochromatosis mutation. Journal of Gastroenterology and Hepatology (Australia), 1999, 14, 1188-1191.	1.4	30
66	The monoamine oxidase B gene GT repeat polymorphism and Parkinson's disease in a Chinese population. Journal of Neurology, 2000, 247, 52-55.	1.8	30
67	The α-Synuclein Gene and Parkinson Disease in a Chinese Population. Archives of Neurology, 2000, 57, 501.	4.9	30
68	Evaluating industry-based doctoral research programs: perspectives and outcomes of Australian Cooperative Research Centre graduates. Studies in Higher Education, 2012, 37, 843-858.	2.9	30
69	Populationâ€specific frequencies for <i>LRRK2</i> susceptibility variants in the genetic epidemiology of Parkinson's disease (GEOâ€PD) consortium. Movement Disorders, 2013, 28, 1740-1744.	2.2	30
70	Advances in the development of imaging probes and aggregation inhibitors for alpha-synuclein. Acta Pharmacologica Sinica, 2020, 41, 483-498.	2.8	30
71	Sequence variation in the proximity of IDE may impact age at onset of both Parkinson disease and Alzheimer disease. Neurogenetics, 2004, 5, 115-119.	0.7	28
72	Developing professional researchers: research students' graduate attributes. Studies in Continuing Education, 2007, 29, 19-36.	1.2	28

#	Article	IF	Citations
73	Assessment methods and factors associated with depression in Parkinson's disease. Journal of the Neurological Sciences, 2011, 310, 208-210.	0.3	28
74	Psychiatric disorders in idiopathic-isolated focal dystonia. Journal of Neurology, 2014, 261, 668-674.	1.8	28
75	Characteristics and Treatment of Anxiety Disorders in Parkinson's Disease. Movement Disorders Clinical Practice, 2015, 2, 155-162.	0.8	28
76	Comprehensive Assessment of Genetic Sequence Variants in the Antioxidant †Master Regulator†Nrf2 in Idiopathic Parkinson†S Disease. PLoS ONE, 2015, 10, e0128030.	1.1	28
77	Association of APOE with Parkinson disease age-at-onset in women. Neuroscience Letters, 2007, 411, 185-188.	1.0	26
78	Using global team science to identify genetic parkinson's disease worldwide. Annals of Neurology, 2019, 86, 153-157.	2.8	26
79	Large-scale assessment of polyglutamine repeat expansions in Parkinson disease. Neurology, 2015, 85, 1283-1292.	1.5	25
80	Knowing Me, Knowing You: Can a Knowledge of Risk Factors for Alzheimer's Disease Prove Useful in Understanding the Pathogenesis of Parkinson's Disease?. Journal of Alzheimer's Disease, 2011, 25, 395-415.	1.2	24
81	Role of the VPS35 D620N mutation in Parkinson's disease. Parkinsonism and Related Disorders, 2017, 36, 10-18.	1.1	24
82	Identification of a New \hat{l}_{\pm} -Synuclein Aggregation Inhibitor via Mass Spectrometry Based Screening. ACS Chemical Neuroscience, 2019, 10, 2683-2691.	1.7	24
83	Glutathione transferase Omega class polymorphisms in Parkinson disease. Neurology, 2004, 62, 1910-1911.	1.5	23
84	Mitochondrial DNA haplogroups J and K are not protective for Parkinson's disease in the Australian community. Movement Disorders, 2009, 24, 290-292.	2.2	23
85	Role of sepiapterin reductase gene at the PARK3 locus in Parkinson's disease. Neurobiology of Aging, 2011, 32, 2108.e1-2108.e5.	1.5	23
86	The ACE Deletion Polymorphism Is Not Associated with Parkinson's Disease. European Neurology, 1999, 41, 103-106.	0.6	22
87	Mapping of the PDQ-39 to EQ-5D scores in patients with Parkinson's disease. Quality of Life Research, 2013, 22, 1065-1072.	1.5	22
88	The parkin gene S/N167 polymorphism in Australian Parkinson's disease patients and controls. Parkinsonism and Related Disorders, 2001, 7, 89-91.	1.1	21
89	Association study of the NEDD9 gene with the risk of developing Alzheimer's and Parkinson's disease. Human Molecular Genetics, 2008, 17, 2863-2867.	1.4	21
90	Serotonin and dopamine transporter genes do not influence depression in Parkinson's disease. Movement Disorders, 2009, 24, 111-115.	2.2	21

#	Article	IF	CITATIONS
91	Mendelian Randomisation Study of Smoking, Alcohol, and Coffee Drinking in Relation to Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 267-282.	1.5	21
92	Common polymorphisms in dystonia-linked genes and susceptibility to the sporadic primary dystonias. Parkinsonism and Related Disorders, 2012, 18, 351-357.	1.1	20
93	Evidence for the role of <i>FMR1</i> gray zone alleles as a risk factor for parkinsonism in females. Movement Disorders, 2018, 33, 1178-1181.	2.2	20
94	Design and Synthesis of Natural Product Inspired Libraries Based on the Three-Dimensional (3D) Cedrane Scaffold: Toward the Exploration of 3D Biological Space. Journal of Medicinal Chemistry, 2018, 61, 6609-6628.	2.9	20
95	Test–retest repeatability of self-reported environmental exposures in Parkinson's disease cases and healthy controls. Parkinsonism and Related Disorders, 2005, 11, 287-295.	1.1	19
96	Haplotype analysis of the <i>PARK 11</i> gene, <i>GIGYF2</i> , in sporadic Parkinson's disease. Movement Disorders, 2009, 24, 448-452.	2.2	19
97	New evidence for, and challenges in, linking small <scp>CGG</scp> repeat expansion <scp>FMR1</scp> alleles with Parkinson's disease. Clinical Genetics, 2013, 84, 382-385.	1.0	19
98	A Grand Challenge: Unbiased Phenotypic Function of Metabolites from <i>Jaspis splendens</i> against Parkinson's Disease. Journal of Natural Products, 2016, 79, 353-361.	1.5	19
99	Sulfotransferase 1A3/4 copy number variation is associated with neurodegenerative disease. Pharmacogenomics Journal, 2018, 18, 209-214.	0.9	19
100	Comparison of Environmental and Genetic Factors for Parkinson's Disease between Chinese and Caucasians. Neuroepidemiology, 2004, 23, 13-22.	1.1	17
101	Parkinson's Disease in Relation to Pesticide Exposure and Nuclear Encoded Mitochondrial Complex I Gene Variants. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-8.	3.0	17
102	Haplotype analysis of the IGF2â€NSâ€TH gene cluster in Parkinson's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 495-499.	1.1	17
103	Pipeline to gene discovery - Analysing familial Parkinsonism in the Queensland Parkinson's Project. Parkinsonism and Related Disorders, 2018, 49, 34-41.	1.1	17
104	Nonâ€replication of association for six polymorphisms from metaâ€analysis of genomeâ€wide association studies of Parkinson's disease: Largeâ€scale collaborative study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 220-228.	1.1	16
105	Knowledge and attitudes towards genetic testing in those affected with Parkinson's disease. Journal of Community Genetics, 2014, 5, 167-177.	0.5	16
106	Hepatic structure-pharmacokinetic relationships: The hepatic disposition and metabolite kinetics of a homologous series of O-acyl derivatives of salicylic acid. British Journal of Pharmacology, 1998, 124, 1475-1483.	2.7	15
107	Utility of a patient survey in identifying fluctuations in early stage Parkinson's disease. Journal of Clinical Neuroscience, 2008, 15, 1235-1239.	0.8	15
108	Structure–Hepatic Disposition Relationships for Phenolic Compounds. Toxicology and Applied Pharmacology, 1999, 158, 50-60.	1.3	14

#	Article	lF	Citations
109	Lack of association between CYP1A1 polymorphism and Parkinson's disease in a Chinese population. Journal of Neural Transmission, 2002, 109, 35-39.	1.4	14
110	Exploiting the potential of molecular profiling in Parkinson's disease: current practice and future probabilities. Expert Review of Molecular Diagnostics, 2010, 10, 1035-1050.	1.5	14
111	The Disposition of Aspirin and Salicylic Acid in the Isolated Perfused Rat Liver: the Effect of Normal and Retrograde Flow on Availability and Mean Transit Time. Journal of Pharmacy and Pharmacology, 2011, 48, 738-743.	1.2	14
112	Alphaâ€synuclein repeat variants and survival in Parkinson's disease. Movement Disorders, 2014, 29, 1053-1057.	2.2	14
113	Dexamethasone Inhibits Copper-Induced Alpha-Synuclein Aggregation by a Metallothionein-Dependent Mechanism. Neurotoxicity Research, 2018, 33, 229-238.	1.3	14
114	How Well Do Caregivers Detect Depression and Anxiety in Patients With Parkinson Disease?. Journal of Geriatric Psychiatry and Neurology, 2018, 31, 227-236.	1.2	14
115	Synthesis, identification, characterization, stability, solubility, and protein binding of ester derivatives of salicylic acid and diflunisal. International Journal of Pharmaceutics, 1997, 153, 25-39.	2.6	13
116	Kororamide B, a brominated alkaloid from the bryozoan Amathia tortuosa and its effects on Parkinson's disease cells. Tetrahedron, 2015, 71, 7879-7884.	1.0	13
117	Rotenone Susceptibility Phenotype in Olfactory Derived Patient Cells as a Model of Idiopathic Parkinson's Disease. PLoS ONE, 2016, 11, e0154544.	1.1	13
118	Hepatic Disposition and Metabolite Kinetics of a Homologous Series of Diflunisal Esters. Journal of Pharmaceutical Sciences, 1998, 87, 943-951.	1.6	12
119	Meeting the Challenge: Using Cytological Profiling to Discover Chemical Probes from Traditional Chinese Medicines against Parkinson's Disease. ACS Chemical Neuroscience, 2016, 7, 1628-1634.	1.7	12
120	The Queensland Parkinson's Project: An Overview of 20 Years of Mortality from Parkinson's Disease. Journal of Movement Disorders, 2021, 14, 34-41.	0.7	12
121	Genetic and environmental risk factors and their interactions for Parkinson's disease in a Chinese population. Journal of Clinical Neuroscience, 2003, 10, 313-315.	0.8	11
122	A novel screen for nuclear mitochondrial gene associations with Parkinson?s disease. Journal of Neural Transmission, 2004, 111, 191-199.	1.4	11
123	Nutrition screening and assessment in Parkinson's disease: AÂcomparison of methods. E-SPEN Journal, 2013, 8, e187-e192.	0.5	11
124	Risk factors for idiopathic dystonia in Queensland, Australia. Journal of Clinical Neuroscience, 2014, 21, 2145-2149.	0.8	11
125	A Grand Challenge. 2. Phenotypic Profiling of a Natural Product Library on Parkinson's Patient-Derived Cells. Journal of Natural Products, 2016, 79, 1982-1989.	1.5	11
126	Genetic Analysis of RAB39B in an Early-Onset Parkinson's Disease Cohort. Frontiers in Neurology, 2020, 11, 523.	1.1	11

#	Article	IF	Citations
127	N400 and emotional word processing in Parkinson's disease Neuropsychology, 2017, 31, 585-595.	1.0	11
128	An isolated in-situ rat head perfusion model for pharmacokinetic studies. Pharmaceutical Research, 2000, 17, 127-134.	1.7	10
129	TNF Polymorphism and Cardiovascular Disease: TNF gene polymorphism and quantitative traits related to cardiovascular disease: getting to the heart of the matter. European Journal of Human Genetics, 2007, 15, 609-611.	1.4	10
130	Mini-review on initiatives to interfere with the propagation and clearance of alpha-synuclein in Parkinson's disease. Translational Neurodegeneration, 2017, 6, 33.	3.6	10
131	Depression symptomatology correlates with event-related potentials in Parkinson's disease: An affective priming study. Journal of Affective Disorders, 2019, 245, 897-904.	2.0	10
132	O-GlcNAcylation of truncated NAC segment alters peptide-dependent effects on \hat{l}_{\pm} -synuclein aggregation. Bioorganic Chemistry, 2020, 94, 103389.	2.0	10
133	A functional polymorphism in the parkin gene promoter affects the age of onset of Parkinson's disease. Neuroscience Letters, 2007, 414, 170-173.	1.0	9
134	Lack of reproducibility in re-evaluating associations between GCH1 polymorphisms and Parkinson's disease and isolated dystonia in an Australian case–control group. Parkinsonism and Related Disorders, 2014, 20, 668-670.	1.1	9
135	Chemical constituents from Macleaya cordata (Willd) R. Br. and their phenotypic functions against a Parkinson's disease patient-derived cell line. Bioorganic and Medicinal Chemistry, 2020, 28, 115732.	1.4	9
136	Novel Furan-2-yl-1 <i>H</i> -pyrazoles Possess Inhibitory Activity against α-Synuclein Aggregation. ACS Chemical Neuroscience, 2020, 11, 2303-2315.	1.7	9
137	Focused antithrombotic therapy: Novel anti-platelet salicylates with reduced ulcerogenic potential and higher first-pass detoxification than aspirin in rats. Translational Research, 1998, 132, 469-477.	2.4	8
138	Rare POLG1 CAG variants do not influence Parkinson's disease or polymerase gamma function. Mitochondrion, 2014, 15, 65-68.	1.6	8
139	Anti-prion and α-Synuclein Aggregation Inhibitory Sterols from the Sponge <i>Lamellodysidea</i> cf. <i>chlorea</i> . Journal of Natural Products, 2020, 83, 3751-3757.	1.5	8
140	The Serotonin Transporter Gene and Parkinson's Disease. European Neurology, 2000, 44, 108-111.	0.6	7
141	A door-to-door survey to estimate the prevalence of Parkinsonism in Pakistan. Neuropsychiatric Disease and Treatment, 2016, 12, 1499.	1.0	7
142	Evaluation of the interaction between LRRK2 and PARK16 loci in determining risk of Parkinson's disease: analysis of a large multicenter study. Neurobiology of Aging, 2017, 49, 217.e1-217.e4.	1.5	7
143	The Effect of Protein Binding on the Hepatic First Pass of O-Acyl Salicylate Derivatives in the Rat. Journal of Pharmacy and Pharmacology, 2011, 50, 63-69.	1.2	6
144	Perspective: Current Pitfalls in the Search for Future Treatments and Prevention of Parkinson's Disease. Frontiers in Neurology, 2020, 11, 686.	1.1	6

#	Article	IF	CITATIONS
145	Sycosterol A, an α-Synuclein Inhibitory Sterol from the Australian Ascidian <i>Sycozoa cerebriformis </i> . Journal of Natural Products, 2021, 84, 3039-3043.	1.5	6
146	Phlegmacaritones A and B, a Pair of Serratane-Related Triterpenoid Epimers with an Unprecedented Carbon Skeleton from <i>Phlegmariurus carinatus</i> . Journal of Natural Products, 2022, 85, 899-909.	1.5	6
147	Development of a Sensitive and Specific Radioimmunoassay for Benztropine. Journal of Pharmaceutical Sciences, 1993, 82, 1027-1032.	1.6	5
148	Metabolite mean transit times in the liver as predicted by various models of hepatic elimination. Journal of Pharmacokinetics and Pharmacodynamics, 1997, 25, 477-505.	0.6	5
149	Caffeine and Parkinson's disease: are we getting our fix on risk-modifying gene-environment interactions?. European Journal of Neurology, 2011, 18, 671-672.	1.7	5
150	Probabilistic subgroup identification using Bayesian finite mixture modelling: A case study in Parkinson's disease phenotype identification. Statistical Methods in Medical Research, 2012, 21, 563-583.	0.7	5
151	Screening for rare sequence variants in the <i>THAP1</i> gene in a primary dystonia cohort. Movement Disorders, 2013, 28, 1752-1753.	2.2	5
152	Differential patterns of internally generated responses in parkinsonian disorders. Neuropsychologia, 2020, 146, 107569.	0.7	5
153	Induced pluripotent stem cell line (LCSBi001-A) derived from a patient with Parkinson's disease carrying the p.D620N mutation in VPS35. Stem Cell Research, 2020, 45, 101776.	0.3	5
154	A Grand Challenge. 3. Unbiased Phenotypic Function of Metabolites from Australia Plants Gloriosa superba and Alangium villosum against Parkinson's Disease. Journal of Natural Products, 2020, 83, 1440-1452.	1.5	5
155	Editorial: Celebrating the Diversity of Genetic Research to Dissect the Pathogenesis of Parkinson's Disease. Frontiers in Neurology, 2021, 12, 648417.	1.1	5
156	Stem Cell Models for Biomarker Discovery in Brain Disease. International Review of Neurobiology, 2011, 101, 239-257.	0.9	4
157	Wild-type and mutant (G2019S) leucine-rich repeat kinase 2 (LRRK2) associate with subunits of the translocase of outer mitochondrial membrane (TOM) complex. Experimental Cell Research, 2019, 375, 72-79.	1.2	4
158	Hunting for Familial Parkinson's Disease Mutations in the Post Genome Era. Genes, 2021, 12, 430.	1.0	4
159	Calcium channels and iron metabolism: A redox catastrophe in Parkinson's disease and an innovative path to novel therapies?. Redox Biology, 2021, 47, 102136.	3.9	4
160	Zeta class glutathione transferase polymorphisms and Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 70, 407-407.	0.9	4
161	Hesperine, a new imidazole alkaloid and \hat{l} ±-synuclein binding activity of 1-methyl-1,2,7,8-tetrahydro-2,8-dioxoadenosine from the marine sponge Clathria (Thalysias) cf. hesperia. Results in Chemistry, 2022, 4, 100302.	0.9	4
162	Glutathione transferase polymorphism and Parkinson's disease. Lancet, The, 1999, 353, 71-72.	6.3	3

#	Article	ΙF	Citations
163	Teaching Neuro <i>Images</i> : Neuroferritinopathy. Neurology, 2011, 77, e107.	1.5	3
164	Factors related to sleep disturbances for individuals with Parkinson's disease: a regional perspective. International Psychogeriatrics, 2020, 32, 827-838.	0.6	3
165	14, 219.		3
166	Strong Predictive Algorithm of Pathogenesis-Based Biomarkers Improves Parkinson's Disease Diagnosis. Molecular Neurobiology, 2022, 59, 1476-1485.	1.9	3
167	Proteomic profiling of idiopathic Parkinson's disease primary patient cells by SWATHâ€MS. Proteomics - Clinical Applications, 2022, 16, e2200015.	0.8	3
168	Validity of a selfâ€rated method to identify a lifetime history of depression in Parkinson's disease. Movement Disorders, 2009, 24, 2436-2438.	2.2	2
169	Reply: Heterozygous PINK1 p.G411S in rapid eye movement sleep behaviour disorder. Brain, 2017, 140, e33-e33.	3.7	2
170	Establishing historical sample data is essential for identification of unaccounted Australian soldiers from WWI, WWII, and the Korean War. Australian Journal of Forensic Sciences, 2020, 52, 529-536.	0.7	2
171	Oxidative Stress in Parkinson's Disease; Parallels Between Current Animal Models, Human Studies and Cells. , 0, , .		2
172	Singing for people with Parkinson's disease. The Cochrane Library, 2019, , .	1.5	1
173	Evidence of a Recessively Inherited CCN3 Mutation as a Rare Cause of Early-Onset Parkinsonism. Frontiers in Neurology, 2020, 11, 331.	1.1	1
174	A Rare Case of Green Gelatinous Mass Formation on a Deep Brain Stimulation Implantable Pulse Generator. Journal of Movement Disorders, 2021, 14, 81-83.	0.7	1
175	Changes in pallidal neural activity following long-term symptom improvement from botulinum toxin treatment in DYT6 dystonia: a case report. Journal of Medical Case Reports, 2022, 16, 15.	0.4	1
176	Australian Parkinson's Genetics Study (APGS): pilot (n=1532). BMJ Open, 2022, 12, e052032.	0.8	1
177	Impulse-response Studies on Tracer Doses of [14C]Lignocaine and its Multiple Metabolites in the Perfused Rat Liver. Journal of Pharmacy and Pharmacology, 2011, 49, 1008-1018.	1.2	0
178	Subcortical Activity during Verbal Selection and Suppression in Parkinson's Disease. Procedia, Social and Behavioral Sciences, 2012, 61, 50-51.	0.5	0
179	Frontispiece: NMR Fingerprints of the Drug-like Natural-Product Space Identify Iotrochotazineâ€A: A Chemical Probe to Study Parkinson's Disease. Angewandte Chemie - International Edition, 2014, 53, n/a-n/a.	7.2	0
180	Frontispiz: NMR Fingerprints of the Drug-like Natural-Product Space Identify Iotrochotazineâ€A: A Chemical Probe to Study Parkinson's Disease. Angewandte Chemie, 2014, 126, n/a-n/a.	1.6	0

#	Article	lF	CITATIONS
181	Nrf2 and Parkinson's Disease. , 2016, , .		0
182	Design, Synthesis, and Biological Evaluation of Bimodal Glycopeptides as Inhibitors of Neurotoxic Protein Aggregation. Proceedings (mdpi), 2019 , 22 , .	0.2	0
183	RELIABILITY OF SELF-REPORTED ENVIRONMENTAL EXPOSURE DATA IN AN EPIDEMIOLOGICAL STUDY OF PARKINSON'S DISEASE. Epidemiology, 2003, 14, S121-S122.	1.2	O
184	An Ensemble Approach to Modelling the Combined Effect of Risk Factors on Age at Parkinson's Disease Onset. Lecture Notes in Mathematics, 2020, , 275-302.	0.1	0