Pilar S SaÅ,,chez-BlÃ;zquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5846974/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Mu-Opioid Receptor and the NMDA Receptor Associate in PAG Neurons: Implications in Pain Control. Neuropsychopharmacology, 2012, 37, 338-349.	5.4	155
2	Chronic Pain Leads to Concomitant Noradrenergic Impairment and Mood Disorders. Biological Psychiatry, 2013, 73, 54-62.	1.3	149
3	Opiates as Antidepressants. Current Pharmaceutical Design, 2009, 15, 1612-1622.	1.9	109
4	The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: implications in psychosis and schizophrenia. Frontiers in Pharmacology, 2014, 4, 169.	3.5	98
5	Agonists determine the pattern of G-protein activation in μ-opioid receptor-mediated supraspinal analgesia. Brain Research Bulletin, 2001, 54, 229-235.	3.0	89
6	RGS9 proteins facilitate acute tolerance to mu-opioid effects. European Journal of Neuroscience, 2001, 13, 801-811.	2.6	80
7	Cannabidiol enhances morphine antinociception, diminishes NMDA-mediated seizures and reduces stroke damage via the sigma 1 receptor. Molecular Brain, 2018, 11, 51.	2.6	80
8	Direct Association of Mu-Opioid and NMDA Glutamate Receptors Supports their Cross-Regulation: Molecular Implications for Opioid Tolerance. Current Drug Abuse Reviews, 2012, 5, 199-226.	3.4	77
9	Activation of μ-Opioid Receptors Transfers Control of Cα Subunits to the Regulator of G-protein Signaling RGS9-2. Journal of Biological Chemistry, 2005, 280, 8951-8960.	3.4	73
10	Active behaviours produced by antidepressants and opioids in the mouse tail suspension test. International Journal of Neuropsychopharmacology, 2013, 16, 151-162.	2.1	72
11	The σ1 Receptor Engages the Redox-Regulated HINT1 Protein to Bring Opioid Analgesia Under NMDA Receptor Negative Control. Antioxidants and Redox Signaling, 2015, 22, 799-818.	5.4	71
12	The RGSZ2 Protein Exists in a Complex with μ-Opioid Receptors and Regulates the Desensitizing Capacity of Gz Proteins. Neuropsychopharmacology, 2005, 30, 1632-1648.	5.4	69
13	Cannabinoid Receptors Couple to NMDA Receptors to Reduce the Production of NO and the Mobilization of Zinc Induced by Glutamate. Antioxidants and Redox Signaling, 2013, 19, 1766-1782.	5.4	69
14	Morphine alters the selective association between mu-opioid receptors and specific RGS proteins in mouse periaqueductal gray matter. Neuropharmacology, 2005, 48, 853-868.	4.1	68
15	The R7 Subfamily of RGS Proteins Assists Tachyphylaxis and Acute Tolerance at μ-Opioid Receptors. Neuropsychopharmacology, 2003, 28, 1983-1990.	5.4	66
16	Endocannabinoid control of glutamate NMDA receptors: the therapeutic potential and consequences of dysfunction. Oncotarget, 2016, 7, 55840-55862.	1.8	66
17	NMDAR-nNOS generated zinc recruits PKCγ to the HINT1–RGS17 complex bound to the C terminus of Mu-opioid receptors. Cellular Signalling, 2008, 20, 1855-1864.	3.6	61
18	RGSZ1 and GAIP Regulate μ- but Not δ-Opioid Receptors in Mouse CNS: Role in Tachyphylaxis and Acute Tolerance. Neuropsychopharmacology, 2004, 29, 1091-1104.	5.4	59

#	Article	IF	CITATIONS
19	Pertussis toxin differentially reduces the efficay of opioids to produce supraspinal analgesia in the mouse. European Journal of Pharmacology, 1988, 152, 357-361.	3.5	57
20	Mu-Opioid Receptors Transiently Activate the Akt-nNOS Pathway to Produce Sustained Potentiation of PKC-Mediated NMDAR-CaMKII Signaling. PLoS ONE, 2010, 5, e11278.	2.5	57
21	The histidine triad nucleotide-binding protein 1 supports mu-opioid receptor–glutamate NMDA receptor cross-regulation. Cellular and Molecular Life Sciences, 2011, 68, 2933-2949.	5.4	50
22	The ON:OFF switch, σ1R-HINT1 protein, controls GPCR-NMDA receptor cross-regulation: Implications in neurological disorders. Oncotarget, 2015, 6, 35458-35477.	1.8	50
23	Sumoylated RGS-Rz Proteins Act as Scaffolds for Mu-Opioid Receptors and G-Protein Complexes in Mouse Brain. Neuropsychopharmacology, 2007, 32, 842-850.	5.4	49
24	Gz Mediates the Long-Lasting Desensitization of Brain CB1 Receptors and is Essential for Cross-Tolerance with Morphine. Molecular Pain, 2009, 5, 1744-8069-5-11.	2.1	48
25	Analgesic antidepressants promote the responsiveness of locus coeruleus neurons to noxious stimulation: Implications for neuropathic pain. Pain, 2012, 153, 1438-1449.	4.2	47
26	The plasticity of the association between mu-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain. European Journal of Pharmacology, 2013, 716, 94-105.	3.5	47
27	Cholera toxin and pertussis toxin on opioid- and α2-mediated supraspinal analgesia in mice. Life Sciences, 1991, 48, 1721-1727.	4.3	46
28	Do Pharmacological Approaches that Prevent Opioid Tolerance Target Different Elements in the Same Regulatory Machinery?. Current Drug Abuse Reviews, 2008, 1, 222-238.	3.4	46
29	The calcium-sensitive Sigma-1 receptor prevents cannabinoids from provoking glutamate NMDA receptor hypofunction: implications in antinociception and psychotic diseases. International Journal of Neuropsychopharmacology, 2014, 17, 1943-1955.	2.1	45
30	HINT1 protein cooperates with cannabinoid 1 receptor to negatively regulate glutamate NMDA receptor activity. Molecular Brain, 2013, 6, 42.	2.6	43
31	Morphine Induces Endocytosis of Neuronal μ-opioid Receptors Through the Sustained Transfer of Gα Subunits to RGSZ2 Proteins. Molecular Pain, 2007, 3, 1744-8069-3-19.	2.1	40
32	GPCRs Promote the Release of Zinc Ions Mediated by nNOS/NO and the Redox Transducer RGSZ2 Protein. Antioxidants and Redox Signaling, 2012, 17, 1163-1177.	5.4	40
33	The function of alpha-2-adrenoceptors in the rat locus coeruleus is preserved in the chronic constriction injury model of neuropathic pain. Psychopharmacology, 2012, 221, 53-65.	3.1	40
34	Effector antagonism by the regulators of G protein signalling (RGS) proteins causes desensitization of mu-opioid receptors in the CNS. Psychopharmacology, 2005, 180, 1-11.	3.1	39
35	Expression of Neural RGS-R7 and Gî ² 5 Proteins in Response to Acute and Chronic Morphine. Neuropsychopharmacology, 2005, 30, 99-110.	5.4	39
36	Fenfluramine diminishes NMDA receptor-mediated seizures via its mixed activity at serotonin 5HT2A and type 1 sigma receptors. Oncotarget, 2018, 9, 23373-23389.	1.8	39

Pilar S SaÅ,,,CHEZ-BLÃ;ZQUEZ

#	Article	IF	CITATIONS
37	Schizophrenia and depression, two poles of endocannabinoid system deregulation. Translational Psychiatry, 2017, 7, 1291.	4.8	38
38	Dynorphin(1–13), a long-lasting inhibitor of opiate receptor binding. Life Sciences, 1982, 31, 1789-1792.	4.3	37
39	GX/Z Is Regulated by μ But Not δ Opioid Receptors in the Stimulation of the Low KmGTPase Activity in Mouse Periaqueductal Grey Matter. European Journal of Neuroscience, 1997, 9, 1194-1200.	2.6	37
40	Influence of Gz and Gi2 transducer proteins in the affinity of opioid agonists to μ receptors. European Journal of Neuroscience, 1998, 10, 2557-2564.	2.6	37
41	The GBeta5 subunit that associates with the R7 subfamily of RGS proteins regulates mu-opioid effects. Neuropharmacology, 2003, 45, 82-95.	4.1	37
42	HINT1 protein: A new therapeutic target to enhance opioid antinociception and block mechanical allodynia. Neuropharmacology, 2015, 89, 412-423.	4.1	37
43	Neuropeptide Y is an inhibitor of neural function in the myenteric plexus of the guinea-pig ileum. Peptides, 1986, 7, 623-629.	2.4	35
44	RGS14 prevents morphine from internalizing Mu-opioid receptors in periaqueductal gray neurons. Cellular Signalling, 2007, 19, 2558-2571.	3.6	33
45	RGS-Rz and RGS9-2 proteins control mu-opioid receptor desensitisation in CNS: the role of activated Gαz subunits. Neuropharmacology, 2005, 48, 134-150.	4.1	32
46	NO-released Zinc Supports the Simultaneous Binding of Raf-1 and PKCÎ ³ Cysteine-Rich Domains to HINT1 Protein at the Mu-Opioid Receptor. Antioxidants and Redox Signaling, 2011, 14, 2413-2425.	5.4	31
47	RGSZ2 Binds to the Neural Nitric Oxide Synthase PDZ Domain to Regulate Mu-Opioid Receptor-Mediated Potentiation of the <i>N</i> -Methyl-D-Aspartate Receptor-Calmodulin-Dependent Protein Kinase II Pathway. Antioxidants and Redox Signaling, 2011, 15, 873-887.	5.4	30
48	Evaluation of δ receptor mediation of supraspinal opioid analgesia by in vivo protection against the β-funaltrexamine antagonist effect. European Journal of Pharmacology, 1989, 159, 9-23.	3.5	29
49	[1] In vivo modulation of G proteins and opioid receptor function by antisense oligodeoxynucleotides. Methods in Enzymology, 2000, 314, 3-20.	1.0	27
50	Brain-specific Cαz interacts with Src tyrosine kinase to regulate Mu-opioid receptor-NMDAR signaling pathway. Cellular Signalling, 2009, 21, 1444-1454.	3.6	27
51	The Sigma-1 Receptor Antagonist, S1RA, Reduces Stroke Damage, Ameliorates Post-Stroke Neurological Deficits and Suppresses the Overexpression of MMP-9. Molecular Neurobiology, 2018, 55, 4940-4951.	4.0	27
52	Impairment by apomorphine of one-trial passive avoidance learning in mice: The opposing roles of the dopamine and noradrenaline systems. Psychopharmacology, 1979, 61, 43-47.	3.1	23
53	Calcium/calmodulin-dependent protein kinase II supports morphine antinociceptive tolerance by phosphorylation of glycosylated phosducin-like protein. Neuropharmacology, 2008, 54, 319-330.	4.1	23
54	Lack of dependence and rewarding effects of deltorphin II in mu-opioid receptor-deficient mice. European Journal of Neuroscience, 2001, 13, 153-161.	2.6	22

#	Article	IF	CITATIONS
55	Dynorphin1–13: interaction with other opiate ligand bindings in vitro. Brain Research, 1984, 302, 392-396.	2.2	21
56	Administration of myr+-Gi2α subunits prevents acute tolerance (tachyphylaxis) to mu-opioid effects in mice. Neuropharmacology, 2001, 40, 560-569.	4.1	21
57	Intracerebroventricular injection of antibodies directed against Gsα enhances the supraspinal antinociception induced by morphine, β-endorphin and clonidine in mice. Life Sciences, 1992, 51, PL237-PL242.	4.3	19
58	GX/Z and Gi2 transducer proteins on μ/Ĵ´ opioid-mediated supraspinal antinociception. Life Sciences, 1993, 53, PL381-PL386.	4.3	19
59	Ligands Exert Biased Activity to Regulate Sigma 1 Receptor Interactions With Cationic TRPA1, TRPV1, and TRPM8 Channels. Frontiers in Pharmacology, 2019, 10, 634.	3.5	18
60	Stimulation of μ- and δ-opioid receptors enhances phosphoinositide metabolism in mouse spinal cord: evidence for subtypes of δ-receptors. European Journal of Neuroscience, 1999, 11, 2059-2064.	2.6	17
61	Antibodies and antisense oligodeoxynucleotides to μ-opioid receptors, selectively block the effects of μ-opioid agonists on intestinal transit and permeability in mice. British Journal of Pharmacology, 1999, 127, 397-404.	5.4	17
62	Myr+-Gi2α and Goα subunits restore the efficacy of opioids, clonidine and neurotensin giving rise to antinociception in G-protein knock-down mice. Neuropharmacology, 1999, 38, 1861-1873.	4.1	16
63	Increased PKC activity and altered GSK3β/NMDAR function drive behavior cycling in HINT1-deficient mice: bipolarity or opposing forces. Scientific Reports, 2017, 7, 43468.	3.3	15
64	The Axonal Motor Neuropathy-Related HINT1 Protein Is a Zinc- and Calmodulin-Regulated Cysteine SUMO Protease. Antioxidants and Redox Signaling, 2019, 31, 503-520.	5.4	15
65	Dissimilar efficacy of opioids to produce μ-mediated analgesia: Role of Gx/z and G12 transducer proteins. Life Sciences, 1994, 55, PL205-PL212.	4.3	14
66	Antibodies directed against α subunits of Gi, Gx/z, Go and GS transducer proteins reduced the morphine withdrawal syndrome in mice. Life Sciences, 1994, 55, PL445-PL450.	4.3	14
67	Intrathecal pertussis toxin attenuates the morphine withdrawal syndrome in normal but not in arthritic rats. Life Sciences, 1990, 46, 329-334.	4.3	13
68	The Sigma 2 receptor promotes and the Sigma 1 receptor inhibits mu-opioid receptor-mediated antinociception. Molecular Brain, 2020, 13, 150.	2.6	13
69	SUMO-SIM Interactions Regulate the Activity of RGSZ2 Proteins. PLoS ONE, 2011, 6, e28557.	2.5	13
70	Effect of intrathecal injection of pertussis toxin on substance P, norepinephrine and serotonin contents in various neural structures of arthritic rats. Life Sciences, 1990, 47, 1915-1923.	4.3	12
71	Intracerebroventricular N-ethylmaleimide differentially reduces supraspinal opioid analgesia in mice. European Journal of Pharmacology, 1989, 166, 193-200.	3.5	11
72	Opioid activity of pro-enkephalin-derived peptides in mouse vas deferens and guinea pig ileum. Neuroscience Letters, 1985, 61, 267-271.	2.1	10

Pilar S SaÅ,,chez-BlÃizquez

#	Article	IF	CITATIONS
73	Î ⁻ opioid supraspinal antinociception in mice is mediated by G13 transducer proteins. Life Sciences, 1993, 53, PL129-PL134.	4.3	10
74	Opiate activity of peptides derived from the three opioid peptide families on the rat vas deferens. Neuropeptides, 1984, 5, 181-184.	2.2	9
75	II. αN-acetyl human β-endorphin-(1–31) alleviates the morphine withdrawal syndrome in rodents: A comparative study with clonidine. Life Sciences, 1992, 50, 2099-2109.	4.3	9
76	In vivo injection of antibodies directed against the cloned μ opioid receptor blocked supraspinal analgesia induced by μ-agonists in mice. Life Sciences, 1995, 56, PL237-PL242.	4.3	9
77	Local changes in GTP-binding protein immunoreactivities in human epileptogenic neocortex. Experimental Brain Research, 1998, 119, 153-158.	1.5	9
78	Calmodulin Supports TRPA1 Channel Association with Opioid Receptors and Glutamate NMDA Receptors in the Nervous Tissue. International Journal of Molecular Sciences, 2021, 22, 229.	4.1	9
79	Transport of CSF antibodies to Gα subunits across neural membranes requires binding to the target protein and protein kinase C activity. Molecular Brain Research, 1999, 65, 151-166.	2.3	8
80	Dynorphin(1–10)amide: A potent and selective analog of dynorphin(1–13). Life Sciences, 1982, 31, 1817-1820.	4.3	7
81	αN-acetyl derivatives of β-endorphin-(1–31) and -(1–27) regulate the supraspinal antinociceptive activity of different opioids in mice. Life Sciences, 1991, 48, 1417-1427.	4.3	7
82	Antibodies raised against the N-terminal sequence of δopioid receptors blocjed δ-mediated supraspinal antinociception in mice. Life Sciences, 1994, 54, PL191-PL196.	4.3	7
83	Use of selective antagonists and antisense oligonucleotides to evaluate the mechanisms of BUBU antinociception. European Journal of Pharmacology, 1999, 383, 29-37.	3.5	7
84	The σ1 Receptor and the HINT1 Protein Control α2δ1 Binding to Glutamate NMDA Receptors: Implications in Neuropathic Pain. Biomolecules, 2021, 11, 1681.	4.0	7
85	The ALS-Related Ïf 1R E102Q Mutant Eludes Ligand Control and Exhibits Anomalous Response to Calcium. International Journal of Molecular Sciences, 2020, 21, 7339.	4.1	6
86	Further characterization of αN-acetyl β-endorphin-(1–31) regulatory activity, I: Effect on opioid- and α2-mediated supraspinal antinociception in mice. Life Sciences, 1992, 50, 2083-2097.	4.3	5
87	Mastoparan reduces the supraspinal analgesia mediated by μ/Ĵ´-opioid receptors in mice. European Journal of Pharmacology, 1994, 258, 159-162.	3.5	5
88	The delta2-opioid receptor subtype stimulates phosphoinositide metabolism in mouse periaqueductal gray matter. Life Sciences, 1998, 62, PL253-PL258.	4.3	5
89	Human HINT1 Mutant Proteins that Cause Axonal Motor Neuropathy Exhibit Anomalous Interactions with Partner Proteins. Molecular Neurobiology, 2021, 58, 1834-1845.	4.0	5
90	G-receptor antagonists increased the activating effect of mastoparan on low Km GTPase of mouse PAG. Cellular Signalling, 1995, 7, 151-155.	3.6	4

#	Article	IF	CITATIONS
91	Sigma 1 Receptor Antagonists Inhibit Manic-Like Behaviors in Two Congenital Strains of Mice. International Journal of Neuropsychopharmacology, 2018, 21, 938-948.	2.1	4
92	Exogenous myristoylated-Gi2α subunits of GTP-binding proteins are mitogens following their internalization by astrocytes in culture. Molecular Brain Research, 2003, 110, 15-26.	2.3	3
93	$\hat{l}^{1}\!\!/4$ -OPIOID RECEPTORS REGULATE PERTUSSIS TOXIN-INSENSITIVE Gx/z- AND Gq-TRANSDUCER PROTEINS IN THE PRODUCTION OF ANALGESIA IN THE MOUSE. Analgesia (Elmsford, N Y), 1995, 1, 429-432.	0.5	3
94	Detecting Zinc Release Induced by Mu-Opioid Receptor Agonists in Brain Slices. Methods in Molecular Biology, 2015, 1230, 233-241.	0.9	2
95	Different modes of opiate interaction in rat vas deferens. Life Sciences, 1982, 31, 1683-1686.	4.3	0