List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5846933/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superior Cardiovascular Effect of Aerobic Interval Training Versus Moderate Continuous Training in Heart Failure Patients. Circulation, 2007, 115, 3086-3094.	1.6	1,640
2	Physiology of Soccer. Sports Medicine, 2005, 35, 501-536.	3.1	1,469
3	Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation, 2016, 134, e653-e699.	1.6	1,423
4	Aerobic Interval Training Versus Continuous Moderate Exercise as a Treatment for the Metabolic Syndrome. Circulation, 2008, 118, 346-354.	1.6	912
5	High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. British Journal of Sports Medicine, 2014, 48, 1227-1234.	3.1	909
6	Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. British Journal of Sports Medicine, 2004, 38, 285-288.	3.1	756
7	Cardiovascular Risk Factors Emerge After Artificial Selection for Low Aerobic Capacity. Science, 2005, 307, 418-420.	6.0	559
8	Technical performance during soccer matches of the Italian Serie A league: Effect of fatigue and competitive level. Journal of Science and Medicine in Sport, 2009, 12, 227-233.	0.6	526
9	Cardiovascular Risk of High- Versus Moderate-Intensity Aerobic Exercise in Coronary Heart Disease Patients. Circulation, 2012, 126, 1436-1440.	1.6	385
10	Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nature Communications, 2017, 8, 15557.	5.8	321
11	Effect of 2 Soccer Matches in a Week on Physical Performance and Injury Rate. American Journal of Sports Medicine, 2010, 38, 1752-1758.	1.9	317
12	Soccer specific aerobic endurance training. British Journal of Sports Medicine, 2002, 36, 218-221.	3.1	310
13	Strength and endurance of elite soccer players. Medicine and Science in Sports and Exercise, 1998, 30, 462-467.	0.2	299
14	Accuracy of Heart Rate Watches: Implications for Weight Management. PLoS ONE, 2016, 11, e0154420.	1.1	277
15	Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clinical Science, 2009, 116, 317-326.	1.8	260
16	Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clinical Science, 2008, 115, 283-293.	1.8	238
17	Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: A randomized study of cardiovascular effects and quality of life. American Heart Journal, 2009, 158, 1031-1037.	1.2	234
18	Intensity-controlled treadmill running in mice: cardiac and skeletal muscle hypertrophy. Journal of Applied Physiology, 2002, 93, 1301-1309.	1.2	229

#	Article	IF	CITATIONS
19	Peak Oxygen Uptake and Cardiovascular Risk Factors in 4631 Healthy Women and Men. Medicine and Science in Sports and Exercise, 2011, 43, 1465-1473.	0.2	228
20	Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. European Journal of Cardiovascular Prevention and Rehabilitation, 2007, 14, 753-760.	3.1	224
21	Intensity-controlled treadmill running in rats: V˙ <scp>o</scp> _{2 max} and cardiac hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1301-H1310.	1.5	223
22	High-Intensity Interval Training to Maximize Cardiac Benefits of Exercise Training?. Exercise and Sport Sciences Reviews, 2009, 37, 139-146.	1.6	217
23	Moderate vs. high exercise intensity: Differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovascular Research, 2005, 67, 161-172.	1.8	211
24	Player Load, Acceleration, and Deceleration During Forty-Five Competitive Matches of Elite Soccer. Journal of Strength and Conditioning Research, 2016, 30, 351-359.	1.0	203
25	Ageâ€predicted maximal heart rate in healthy subjects: The <scp>HUNT F</scp> itness <scp>S</scp> tudy. Scandinavian Journal of Medicine and Science in Sports, 2013, 23, 697-704.	1.3	201
26	Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovascular Research, 2002, 54, 162-174.	1.8	192
27	Role of RyR2 Phosphorylation at S2814 During Heart Failure Progression. Circulation Research, 2012, 110, 1474-1483.	2.0	187
28	Interval Training Normalizes Cardiomyocyte Function, Diastolic Ca ²⁺ Control, and SR Ca ²⁺ Release Synchronicity in a Mouse Model of Diabetic Cardiomyopathy. Circulation Research, 2009, 105, 527-536.	2.0	173
29	Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. Journal of Applied Physiology, 2010, 108, 804-810.	1.2	166
30	Increased contractility and calcium sensitivity in cardiac myocytes isolated from endurance trained rats. Cardiovascular Research, 2001, 50, 495-508.	1.8	159
31	Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovascular Research, 2008, 81, 723-732.	1.8	159
32	Estimating V˙O2peak from a Nonexercise Prediction Model. Medicine and Science in Sports and Exercise, 2011, 43, 2024-2030.	0.2	159
33	Field and laboratory testing in young elite soccer players. British Journal of Sports Medicine, 2004, 38, 191-196.	3.1	155
34	Temporal Changes in Resting Heart Rate and Deaths From Ischemic Heart Disease. JAMA - Journal of the American Medical Association, 2011, 306, 2579.	3.8	153
35	Aerobic Capacity Reference Data in 3816 Healthy Men and Women 20–90 Years. PLoS ONE, 2013, 8, e64319.	1.1	151
36	Effect of Match-Related Fatigue on Short-Passing Ability in Young Soccer Players. Medicine and Science in Sports and Exercise, 2008, 40, 934-942.	0.2	149

#	Article	IF	CITATIONS
37	Aerobic interval training increases peak oxygen uptake more than usual care exercise training in myocardial infarction patients: a randomized controlled study. Clinical Rehabilitation, 2012, 26, 33-44.	1.0	145
38	Intrinsic Aerobic Capacity Sets a Divide for Aging and Longevity. Circulation Research, 2011, 109, 1162-1172.	2.0	144
39	Effect of High-Intensity Interval Training, Moderate Continuous Training, or Guideline-Based Physical Activity Advice on Peak Oxygen Consumption in Patients With Heart Failure With Preserved Ejection Fraction. JAMA - Journal of the American Medical Association, 2021, 325, 542.	3.8	144
40	Endothelial Dysfunction Induced by Post-Prandial Lipemia. Journal of the American College of Cardiology, 2009, 53, 200-206.	1.2	137
41	Maximal strength training improves work economy in trained female cross-country skiers. Medicine and Science in Sports and Exercise, 1999, 31, 870-877.	0.2	129
42	Circulating MicroRNAs and Aerobic Fitness – The HUNT-Study. PLoS ONE, 2013, 8, e57496.	1.1	128
43	Exercise Training Prevents Oxidative Stress and Ubiquitin-Proteasome System Overactivity and Reverse Skeletal Muscle Atrophy in Heart Failure. PLoS ONE, 2012, 7, e41701.	1.1	123
44	Heart failure with preserved ejection fraction induces molecular, mitochondrial, histological, and functional alterations in rat respiratory and limb skeletal muscle. European Journal of Heart Failure, 2015, 17, 263-272.	2.9	123
45	Relationship Between Anthropometric and Physiological Characteristics in Youth Soccer Players. Journal of Strength and Conditioning Research, 2009, 23, 1204-1210.	1.0	120
46	Guidelines for the delivery and monitoring of high intensity interval training in clinical populations. Progress in Cardiovascular Diseases, 2019, 62, 140-146.	1.6	119
47	A single weekly bout of exercise may reduce cardiovascular mortality: how little pain for cardiac gain? †The HUNT study, Norway'. European Journal of Cardiovascular Prevention and Rehabilitation, 2006, 13, 798-804.	3.1	118
48	Low- and High-Volume of Intensive Endurance Training Significantly Improves Maximal Oxygen Uptake after 10-Weeks of Training in Healthy Men. PLoS ONE, 2013, 8, e65382.	1.1	118
49	High-Intensity Aerobic Exercise Training Improves the Heart in Health and Disease. Journal of Cardiopulmonary Rehabilitation and Prevention, 2010, 30, 2-11.	1.2	116
50	MicroRNAs as Important Regulators of Exercise Adaptation. Progress in Cardiovascular Diseases, 2017, 60, 130-151.	1.6	114
51	A Simple Nonexercise Model of Cardiorespiratory Fitness Predicts Long-Term Mortality. Medicine and Science in Sports and Exercise, 2014, 46, 1159-1165.	0.2	111
52	Effects of preterm birth and fetal growth retardation on cardiovascular risk factors in young adulthood. Early Human Development, 2009, 85, 239-245.	0.8	109
53	Circulating microRNAs predict future fatal myocardial infarction in healthy individuals – The HUNT study. Journal of Molecular and Cellular Cardiology, 2016, 97, 162-168.	0.9	109
54	High-Intensity Interval Exercise Effectively Improves Cardiac Function in Patients With Type 2 Diabetes Mellitus and Diastolic Dysfunction. Journal of the American College of Cardiology, 2014, 64, 1758-1760.	1.2	107

#	Article	IF	CITATIONS
55	Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. Journal of Molecular and Cellular Cardiology, 2007, 43, 354-361.	0.9	106
56	Aerobic Fitness Is Associated With Cardiomyocyte Contractile Capacity and Endothelial Function in Exercise Training and Detraining. Circulation, 2004, 109, 2897-2904.	1.6	105
57	Dietary Nitrate Does Not Enhance Running Performance in Elite Cross-Country Skiers. Medicine and Science in Sports and Exercise, 2012, 44, 2213-2219.	0.2	105
58	Time-course of endothelial adaptation following acute and regular exercise. European Journal of Cardiovascular Prevention and Rehabilitation, 2006, 13, 585-591.	3.1	100
59	Remote Ischemic Preconditioning Preserves Mitochondrial Function and Influences Myocardial MicroRNA Expression in Atrial Myocardium During Coronary Bypass Surgery. Circulation Research, 2014, 114, 851-859.	2.0	97
60	Age and gender differences of endothelial function in 4739 healthy adults: the HUNT3 Fitness Study. European Journal of Preventive Cardiology, 2013, 20, 531-540.	0.8	95
61	Physical activity and mortality in men and women with coronary heart disease: a prospective population-based cohort study in Norway (the HUNT study). European Journal of Cardiovascular Prevention and Rehabilitation, 2008, 15, 639-645.	3.1	94
62	Telomere Length and Long-Term Endurance Exercise: Does Exercise Training Affect Biological Age? A Pilot Study. PLoS ONE, 2012, 7, e52769.	1.1	93
63	Acceleration and sprint profiles of a professional elite football team in match play. European Journal of Sport Science, 2015, 15, 101-110.	1.4	92
64	HIITing the brain with exercise: mechanisms, consequences and practical recommendations. Journal of Physiology, 2020, 598, 2513-2530.	1.3	92
65	Endothelial Function in Highly Endurance-Trained Men: Effects of Acute Exercise. Journal of Strength and Conditioning Research, 2008, 22, 535-542.	1.0	85
66	High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart. Journal of Applied Physiology, 2011, 111, 1235-1241.	1.2	78
67	High- versus moderate-intensity aerobic exercise training effects on skeletal muscle of infarcted rats. Journal of Applied Physiology, 2013, 114, 1029-1041.	1.2	78
68	Effects of 12-Week On-Field Combined Strength and Power Training on Physical Performance Among U-14 Young Soccer Players. Journal of Strength and Conditioning Research, 2010, 24, 644-652.	1.0	76
69	Targeting miR-423-5p Reverses Exercise Training–Induced HCN4 Channel Remodeling and Sinus Bradycardia. Circulation Research, 2017, 121, 1058-1068.	2.0	76
70	Are the neuroprotective effects of exercise training systemically mediated?. Progress in Cardiovascular Diseases, 2019, 62, 94-101.	1.6	76
71	A Rat Model System to Study Complex Disease Risks, Fitness, Aging, and Longevity. Trends in Cardiovascular Medicine, 2012, 22, 29-34.	2.3	75
72	Personalized Activity Intelligence (PAI) for Prevention of Cardiovascular Disease and Promotion of Physical Activity. American Journal of Medicine, 2017, 130, 328-336.	0.6	74

#	Article	IF	CITATIONS
73	Higher plantar pressure on the medial side in four soccer-related movements. British Journal of Sports Medicine, 2007, 41, 93-100.	3.1	73
74	Prediction of Cardiovascular Mortality by Estimated Cardiorespiratory Fitness Independent of Traditional Risk Factors: The HUNT Study. Mayo Clinic Proceedings, 2017, 92, 218-227.	1.4	72
75	Effect of exercise training for five years on all cause mortality in older adults—the Generation 100 study: randomised controlled trial. BMJ, The, 2020, 371, m3485.	3.0	72
76	Exercise and nitric oxide prevent bubble formation: a novel approach to the prevention of decompression sickness?. Journal of Physiology, 2004, 555, 825-829.	1.3	71
77	Regional expression of endothelin-1, ANP, IGF-1, and LV wall stress in the infarcted rat heart. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H2902-H2910.	1.5	68
78	Aerobic exercise before diving reduces venous gas bubble formation in humans. Journal of Physiology, 2004, 555, 637-642.	1.3	68
79	Mechanisms of exerciseâ€induced improvements in the contractile apparatus of the mammalian myocardium. Acta Physiologica, 2010, 199, 425-439.	1.8	68
80	The effects of acute oral antioxidants on diving-induced alterations in human cardiovascular function. Journal of Physiology, 2007, 578, 859-870.	1.3	66
81	Comparison of Three Popular Exercise Modalities on V˙O2max in Overweight and Obese. Medicine and Science in Sports and Exercise, 2016, 48, 491-498.	0.2	66
82	Home-Based Aerobic Interval Training Improves Peak Oxygen Uptake Equal to Residential Cardiac Rehabilitation: A Randomized, Controlled Trial. PLoS ONE, 2012, 7, e41199.	1.1	65
83	Aerobic endurance training reduces bubble formation and increases survival in rats exposed to hyperbaric pressure. Journal of Physiology, 2001, 537, 607-611.	1.3	61
84	Nos inhibition increases bubble formation and reduces survival in sedentary but not exercised rats. Journal of Physiology, 2003, 546, 577-582.	1.3	61
85	Optimising exercise training in prevention and treatment of diastolic heart failure (OptimEx-CLIN): rationale and design of a prospective, randomised, controlled trial. European Journal of Preventive Cardiology, 2014, 21, 18-25.	0.8	61
86	Difference in plantar pressure between the preferred and non-preferred feet in four soccer-related movements. British Journal of Sports Medicine, 2007, 41, 84-92.	3.1	60
87	Swim training suppresses tumor growth in mice. Journal of Applied Physiology, 2009, 107, 261-265.	1.2	59
88	Exercise and cardiac health: physiological and molecular insights. Nature Metabolism, 2020, 2, 829-839.	5.1	59
89	Insomnia Symptoms and Cardiorespiratory Fitness in Healthy Individuals: The Nord-TrÃ,ndelag Health Study (HUNT). Sleep, 2013, 36, 99-108.	0.6	58
90	Effect of Exercise Training on Inflammation Status Among People with Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2012, 10, 267-272.	0.5	57

#	Article	IF	CITATIONS
91	Physical activity, cardiorespiratory fitness, and cardiovascular outcomes in individuals with atrial fibrillation: the HUNT study. European Heart Journal, 2020, 41, 1467-1475.	1.0	57
92	Peak oxygen uptake and incident coronary heart disease in a healthy population: the HUNT Fitness Study. European Heart Journal, 2019, 40, 1633-1639.	1.0	56
93	Effects of aerobic training on the exercise-induced decline in short-passing ability in junior soccer players. Applied Physiology, Nutrition and Metabolism, 2008, 33, 1192-1198.	0.9	55
94	Long-term follow-up after cardiac rehabilitation. International Journal of Cardiology, 2011, 152, 388-390.	0.8	55
95	Coronary Atheroma Regression and Plaque Characteristics Assessed by Grayscale and Radiofrequency Intravascular Ultrasound After Aerobic Exercise. American Journal of Cardiology, 2014, 114, 1504-1511.	0.7	54
96	Do weather changes influence physical activity level among older adults? – The Generation 100 study. PLoS ONE, 2018, 13, e0199463.	1.1	52
97	Temporal changes in cardiorespiratory fitness and risk of dementia incidence and mortality: a population-based prospective cohort study. Lancet Public Health, The, 2019, 4, e565-e574.	4.7	52
98	High-intensity knee extensor training restores skeletal muscle function in COPD patients. European Respiratory Journal, 2012, 40, 1130-1136.	3.1	51
99	Cardio-Respiratory Reference Data in 4631 Healthy Men and Women 20-90 Years: The HUNT 3 Fitness Study. PLoS ONE, 2014, 9, e113884.	1.1	50
100	Exogenous Nitric Oxide and Bubble Formation in Divers. Medicine and Science in Sports and Exercise, 2006, 38, 1432-1435.	0.2	49
101	A randomised controlled study of the long-term effects of exercise training on mortality in elderly people: study protocol for the Generation 100 study. BMJ Open, 2015, 5, e007519-e007519.	0.8	47
102	Autophagy Signaling in Skeletal Muscle of Infarcted Rats. PLoS ONE, 2014, 9, e85820.	1.1	47
103	Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats. Journal of Cellular and Molecular Medicine, 2016, 20, 2208-2212.	1.6	45
104	Time Course of Endothelial Adaptation After Acute and Chronic Exercise in Patients With Metabolic Syndrome. Journal of Strength and Conditioning Research, 2011, 25, 2552-2558.	1.0	44
105	Acute dietary nitrate supplementation improves arterial endothelial function at high altitude: A double-blinded randomized controlled cross over study. Nitric Oxide - Biology and Chemistry, 2015, 50, 58-64.	1.2	44
106	Current physical activity guidelines for health are insufficient to mitigate long-term weight gain: more data in the fitness versus fatness debate (The HUNT study, Norway). British Journal of Sports Medicine, 2014, 48, 1489-1496.	3.1	43
107	Deletion of mouse Alkbh7 leads to obesity. Journal of Molecular Cell Biology, 2013, 5, 194-203.	1.5	40
108	Personal Activity Intelligence (PAI), Sedentary Behavior and Cardiovascular Risk Factor Clustering – the HUNT Study. Progress in Cardiovascular Diseases, 2017, 60, 89-95.	1.6	40

#	Article	IF	CITATIONS
109	High-intensity interval training attenuates endothelial dysfunction in a Dahl salt-sensitive rat model of heart failure with preserved ejection fraction. Journal of Applied Physiology, 2015, 119, 745-752.	1.2	39
110	Differences in Acceleration and High-Intensity Activities Between Small-Sided Games and Peak Periods of Official Matches in Elite Soccer Players. Journal of Strength and Conditioning Research, 2021, 35, 2018-2024.	1.0	39
111	Aerobic capacity-dependent differences in cardiac gene expression. Physiological Genomics, 2008, 33, 100-109.	1.0	37
112	Even low level of physical activity is associated with reduced mortality among people with metabolic syndrome, a population based study (the HUNT 2 study, Norway). BMC Medicine, 2011, 9, 109.	2.3	37
113	Remote ischemic preconditioning preserves mitochondrial function and activates pro-survival protein kinase Akt in the left ventricle during cardiac surgery: A randomized trial. International Journal of Cardiology, 2014, 177, 409-417.	0.8	37
114	Effects of Cariporide and Losartan on Hypertrophy, Calcium Transients, Contractility, and Gene Expression in Congestive Heart Failure. Circulation, 2002, 105, 1380-1386.	1.6	35
115	Effect of a short-acting NO donor on bubble formation from a saturation dive in pigs. Journal of Applied Physiology, 2006, 101, 1541-1545.	1.2	35
116	Caloric Restriction Reverses Hepatic Insulin Resistance and Steatosis in Rats with Low Aerobic Capacity. Endocrinology, 2010, 151, 5157-5164.	1.4	35
117	Prognostic Value of Circulating MicroRNA-210 Levels in Patients with Moderate to Severe Aortic Stenosis. PLoS ONE, 2014, 9, e91812.	1.1	35
118	Mitochondrial respiration and microRNA expression in right and left atrium of patients with atrial fibrillation. Physiological Genomics, 2014, 46, 505-511.	1.0	35
119	Left Ventricular Mechanics During Exercise: A Doppler and Tissue Doppler Study. European Journal of Echocardiography, 2003, 4, 286-291.	2.3	34
120	Exercise Patterns and Peak Oxygen Uptake in a Healthy Population. Medicine and Science in Sports and Exercise, 2012, 44, 1881-1889.	0.2	34
121	A randomised trial comparing weight loss with aerobic exercise in overweight individuals with coronary artery disease: The CUT-IT trial. European Journal of Preventive Cardiology, 2015, 22, 1009-1017.	0.8	34
122	Global Fitness Levels: Findings From a Web-Based Surveillance Report. Progress in Cardiovascular Diseases, 2017, 60, 78-88.	1.6	33
123	Atrioventricular Plane Displacement in Untrained and Trained Females. Medicine and Science in Sports and Exercise, 2004, 36, 1871-1875.	0.2	32
124	Gene expression profiling of skeletal muscle in exercise-trained and sedentary rats with inborn high and low VO _{2max} . Physiological Genomics, 2008, 35, 213-221.	1.0	32
125	Protective Effect of Regular Physical Activity on Depression After Myocardial Infarction: The HUNT Study. American Journal of Medicine, 2016, 129, 82-88.e1.	0.6	32
126	Cardiorespiratory Reference Data in Older Adults. Medicine and Science in Sports and Exercise, 2017, 49, 2206-2215.	0.2	32

ULRIK WISLÄ, FF

#	Article	IF	CITATIONS
127	Human cardiomyocyte calcium handling and transverse tubules in midâ€stage of postâ€myocardialâ€infarction heart failure. ESC Heart Failure, 2018, 5, 332-342.	1.4	32
128	Cardiorespiratory Fitness, Sedentary Time, and Cardiovascular Risk Factor Clustering. Medicine and Science in Sports and Exercise, 2016, 48, 625-632.	0.2	31
129	Personal Activity Intelligence (PAI): A new standard in activity tracking for obtaining a healthy cardiorespiratory fitness level and low cardiovascular risk. Progress in Cardiovascular Diseases, 2019, 62, 179-185.	1.6	31
130	Effect of 24 Sessions of High-Intensity Aerobic Interval Training Carried out at Either High or Moderate Frequency, a Randomized Trial. PLoS ONE, 2014, 9, e88375.	1.1	31
131	Physical Activity as a Long-Term Predictor of Peak Oxygen Uptake. Medicine and Science in Sports and Exercise, 2011, 43, 1675-1679.	0.2	30
132	Development of Global Reference Standards for Directly Measured Cardiorespiratory Fitness: A Report From the Fitness Registry and Importance of Exercise National Database (FRIEND). Mayo Clinic Proceedings, 2020, 95, 255-264.	1.4	30
133	Combined effect of resting heart rate and physical activity on ischaemic heart disease: mortality follow-up in a population study (the HUNT study, Norway). Journal of Epidemiology and Community Health, 2010, 64, 175-181.	2.0	29
134	Predicting VO2peak from Submaximal- and Peak Exercise Models: The HUNT 3 Fitness Study, Norway. PLoS ONE, 2016, 11, e0144873.	1.1	29
135	Expression of perilipins in human skeletal musclein vitroandin vivoin relation to diet, exercise and energy balance. Archives of Physiology and Biochemistry, 2012, 118, 22-30.	1.0	28
136	A Prospective Population Study of Resting Heart Rate and Peak Oxygen Uptake (the HUNT Study,) Tj ETQq0 0 0	rgBT/Ove 1.1	rlock 10 Tf 50
137	Physical activity modifies the risk of atrial fibrillation in obese individuals: The HUNT3 study. European Journal of Preventive Cardiology, 2018, 25, 1646-1652.	0.8	28
138	A small molecule activator of AKT does not reduce ischemic injury of the rat heart. Journal of Translational Medicine, 2015, 13, 76.	1.8	27
139	Powerful extreme phenotype sampling designs and score tests for genetic association studies. Statistics in Medicine, 2018, 37, 4234-4251.	0.8	27
140	The Marked Reduction in Mixed Venous Oxygen Saturation During Early Mobilization After Cardiac Surgery: The Effect of Posture or Exercise?. Anesthesia and Analgesia, 2006, 102, 1609-1616.	1.1	26
141	Pathological and physiological hypertrophies are regulated by distinct gene programs. European Journal of Cardiovascular Prevention and Rehabilitation, 2009, 16, 690-697.	3.1	25
142	Increasing Physical Activity of High Intensity to Reduce the Prevalence of Chronic Diseases and Improve Public Health. Open Cardiovascular Medicine Journal, 2013, 7, 1-8.	0.6	25
143	Age-related change in peak oxygen uptake and change of cardiovascular risk factors. The HUNT Study. Progress in Cardiovascular Diseases, 2020, 63, 730-737.	1.6	24

144Carbon Monoxide Levels Experienced by Heavy Smokers Impair Aerobic Capacity and Cardiac
Contractility and Induce Pathological Hypertrophy. Inhalation Toxicology, 2008, 20, 635-646.0.823

#	Article	IF	CITATIONS
145	The association of metabolic clustering and physical activity with cardiovascular mortality: the HUNT study in Norway. Journal of Epidemiology and Community Health, 2010, 64, 690-695.	2.0	23
146	Serum Levels of Choline-Containing Compounds Are Associated with Aerobic Fitness Level: The HUNT-Study. PLoS ONE, 2012, 7, e42330.	1.1	23
147	Peak Oxygen Uptake and Physical Activity in 13- to 18-Year-Olds. Medicine and Science in Sports and Exercise, 2013, 45, 304-313.	0.2	23
148	CrossTalk proposal: High intensity interval training does have a role in risk reduction or treatment of disease. Journal of Physiology, 2015, 593, 5215-5217.	1.3	23
149	Association between pulmonary function and peak oxygen uptake in elderly: the Generation 100 study. Respiratory Research, 2015, 16, 156.	1.4	23
150	Headache and peak oxygen uptake: The HUNT3 study. Cephalalgia, 2016, 36, 437-444.	1.8	23
151	The Combined Association of Skeletal Muscle Strength and Physical Activity on Mortality in Older Women: The HUNT2 Study. Mayo Clinic Proceedings, 2017, 92, 710-718.	1.4	23
152	Exercise patterns in older adults instructed to follow moderate- or high-intensity exercise protocol – the generation 100 study. BMC Geriatrics, 2018, 18, 208.	1.1	23
153	Can exercise training teach us how to treat Alzheimer's disease?. Ageing Research Reviews, 2022, 75, 101559.	5.0	23
154	New relative intensity ambulatory accelerometer thresholds for elderly men and women: the Generation 100 study. BMC Geriatrics, 2015, 15, 97.	1.1	22
155	EX-MET study: exercise in prevention on of metabolic syndrome – a randomized multicenter trial: rational and design. BMC Public Health, 2018, 18, 437.	1.2	22
156	Cardiomyocyte contractility and calcium handling partially recover after early deterioration during post-infarction failure in rat. Acta Physiologica Scandinavica, 2002, 176, 17-26.	2.3	21
157	Aerobic interval training reduces inducible ventricular arrhythmias in diabetic mice after myocardial infarction. Basic Research in Cardiology, 2015, 110, 44.	2.5	21
158	Personal Activity Intelligence and Mortality in Patients with Cardiovascular Disease: The HUNT Study. Mayo Clinic Proceedings, 2018, 93, 1191-1201.	1.4	21
159	Inflammation Is Strongly Associated With Cardiorespiratory Fitness, Sex, BMI, and the Metabolic Syndrome in a Self-reported Healthy Population: HUNT3 Fitness Study. Mayo Clinic Proceedings, 2019, 94, 803-810.	1.4	21
160	Temporal Changes in a Novel Metric of Physical Activity Tracking (Personal Activity Intelligence) and Mortality: The HUNT Study, Norway. Progress in Cardiovascular Diseases, 2019, 62, 186-192.	1.6	21
161	Identification of novel genetic variants associated with cardiorespiratory fitness. Progress in Cardiovascular Diseases, 2020, 63, 341-349.	1.6	21
162	Aerobic Interval Training Partly Reverse Contractile Dysfunction and Impaired Ca2+ Handling in Atrial Myocytes from Rats with Post Infarction Heart Failure. PLoS ONE, 2013, 8, e66288.	1.1	21

#	Article	IF	CITATIONS
163	Validity of the Yoâ€Yo intermittent endurance test in young soccer players. European Journal of Sport Science, 2011, 11, 309-315.	1.4	20
164	Cardiorespiratory Fitness and the Risk of First Acute Myocardial Infarction: The HUNT Study. Journal of the American Heart Association, 2019, 8, e010293.	1.6	20
165	Evaluation of a new upper body ergometer for cross-country skiers. Medicine and Science in Sports and Exercise, 1998, 30, 1314-1320.	0.2	20
166	Nitric oxide synthase type-1 modulates cardiomyocyte contractility and calcium handling: association with low intrinsic aerobic capacity. European Journal of Cardiovascular Prevention and Rehabilitation, 2007, 14, 319-325.	3.1	19
167	Chronic CaMKII inhibition blunts the cardiac contractile response to exercise training. European Journal of Applied Physiology, 2012, 112, 579-588.	1.2	19
168	Endoplasmic reticulum stress impairs cardiomyocyte contractility through JNK-dependent upregulation of BNIP3. International Journal of Cardiology, 2018, 272, 194-201.	0.8	19
169	Predictors of Dropout in Exercise Trials in Older Adults: The Generation 100 Study. Medicine and Science in Sports and Exercise, 2019, 51, 49-55.	0.2	19
170	Accelerations – a new approach to quantify physical performance decline in male elite soccer?. European Journal of Sport Science, 2019, 19, 1015-1023.	1.4	19
171	Exercise Reveals Proline Dehydrogenase as a Potential Target in Heart Failure. Progress in Cardiovascular Diseases, 2019, 62, 193-202.	1.6	19
172	Nitric oxide synthase type-1 modulates cardiomyocyte contractility and calcium handling: association with low intrinsic aerobic capacity. European Journal of Cardiovascular Prevention and Rehabilitation, 2007, 14, 319-325.	3.1	19
173	The exercise-induced long noncoding RNA <i>CYTOR</i> promotes fast-twitch myogenesis in aging. Science Translational Medicine, 2021, 13, eabc7367.	5.8	19
174	Comparison of left versus right atrial myocardium in patients with sinus rhythm or atrial fibrillation - an assessment of mitochondrial function and microRNA expression. Physiological Reports, 2014, 2, e12124.	0.7	18
175	Correlates of Objectively Measured Physical Activity Among Norwegian Older Adults: The Generation 100 Study. Journal of Aging and Physical Activity, 2016, 24, 369-375.	0.5	18
176	Sedentary Time, Cardiorespiratory Fitness, and Cardiovascular Risk Factor Clustering in Older Adultsthe Generation 100 Study. Mayo Clinic Proceedings, 2016, 91, 1525-1534.	1.4	18
177	Differential regulation of cysteine oxidative post-translational modifications in high and low aerobic capacity. Scientific Reports, 2018, 8, 17772.	1.6	18
178	Skeletal muscle heme oxygenase-1 activity regulates aerobic capacity. Cell Reports, 2021, 35, 109018.	2.9	18
179	Cardiovascular Risk Factors Have Larger Impact on Endothelial Function in Self-Reported Healthy Women than Men in the HUNT3 Fitness Study. PLoS ONE, 2014, 9, e101371.	1.1	18
180	Are Older Adults Physically Active Enough – A Matter of Assessment Method? The Generation 100 Study. PLoS ONE, 2016, 11, e0167012.	1.1	18

#	Article	IF	CITATIONS
181	Disturbed adiponectin – AMPK system in skeletal muscle of patients with metabolic syndrome. European Journal of Preventive Cardiology, 2015, 22, 203-205.	0.8	17
182	Effect of 5 Years of Exercise Intervention at Different Intensities on Brain Structure in Older Adults from the General Population: A Generation 100 Substudy. Clinical Interventions in Aging, 2021, Volume 16, 1485-1501.	1.3	17
183	Effect of 5 years of exercise training on the cardiovascular risk profile of older adults: the Generation 100 randomized trial. European Heart Journal, 2022, 43, 2065-2075.	1.0	17
184	Three Days of Static Stretching Within a Warm-Up Does Not Affect Repeated-Sprint Ability in Youth Soccer Players. Journal of Strength and Conditioning Research, 2011, 25, 838-845.	1.0	16
185	Cardiorespiratory fitness in patients with rheumatoid arthritis is associated with the patient global assessment but not with objective measurements of disease activity. RMD Open, 2019, 5, e000912.	1.8	16
186	Left Atrial Volume, Cardiorespiratory Fitness, and Diastolic Function in Healthy Individuals: The HUNT Study, Norway. Journal of the American Heart Association, 2020, 9, e014682.	1.6	16
187	Copenhagen study of overweight patients with coronary artery disease undergoing low energy diet or interval training: the randomized CUT-IT trial protocol. BMC Cardiovascular Disorders, 2013, 13, 106.	0.7	15
188	Migraine and endothelial function: The HUNT3 Study. Cephalalgia, 2016, 36, 1341-1349.	1.8	15
189	Long-term Changes in Depressive Symptoms and Estimated Cardiorespiratory Fitness and Risk of All-Cause Mortality: The Nord-Trøndelag Health Study. Mayo Clinic Proceedings, 2018, 93, 1054-1064.	1.4	15
190	The role of fibroblast – Cardiomyocyte interaction for atrial dysfunction in HFpEF and hypertensive heart disease. Journal of Molecular and Cellular Cardiology, 2019, 131, 53-65.	0.9	15
191	Ubiquitinâ€proteasomeâ€system and enzymes of energy metabolism in skeletal muscle of patients with HFpEF and HFrEF. ESC Heart Failure, 2021, 8, 2556-2568.	1.4	15
192	Exercise training reverses myocardial dysfunction induced by CaMKIIδ _C overexpression by restoring Ca ²⁺ homeostasis. Journal of Applied Physiology, 2016, 121, 212-220.	1.2	14
193	miR-181c level predicts response to exercise training in patients with heart failure and preserved ejection fraction: an analysis of the OptimEx-Clin trial. European Journal of Preventive Cardiology, 2021, 28, 1722-1733.	0.8	14
194	Venous gas embolism as a predictive tool for improving CNS decompression safety. European Journal of Applied Physiology, 2012, 112, 401-409.	1.2	13
195	Extreme Physical Activity and Coronary Artery Calcification—Running Heavily and Safely With "Hearts of Stone― JAMA Cardiology, 2019, 4, 182.	3.0	12
196	Atherogenic lipidomics profile in healthy individuals with low cardiorespiratory fitness: The HUNT3 fitness study. Atherosclerosis, 2022, 343, 51-57.	0.4	12
197	Transcriptional changes in blood after aerobic interval training in patients with the metabolic syndrome. European Journal of Cardiovascular Prevention and Rehabilitation, 2009, 16, 47-52.	3.1	11
198	A valid and reproducible protocol for testing maximal oxygen uptake in rabbits. European Journal of Cardiovascular Prevention and Rehabilitation, 2010, 17, 83-88.	3.1	11

#	Article	IF	CITATIONS
199	Exercise training and losartan improve endothelial function in heart failure rats by different mechanisms. Scandinavian Cardiovascular Journal, 2013, 47, 160-167.	0.4	11
200	Reduced aerobic capacity causes leaky ryanodine receptors that trigger arrhythmia in a rat strain artificially selected and bred for low aerobic running capacity. Acta Physiologica, 2014, 210, 854-864.	1.8	11
201	Blunted Cardiomyocyte Remodeling Response in Exercise-Resistant Rats. Journal of the American College of Cardiology, 2015, 65, 1378-1380.	1.2	11
202	Estimated Cardiorespiratory Fitness and Risk of Atrial Fibrillation: The Nord-TrÃ,ndelag Health Study. Medicine and Science in Sports and Exercise, 2019, 51, 2491-2497.	0.2	11
203	5 Years of Exercise Intervention Did Not Benefit Cognition Compared to the Physical Activity Guidelines in Older Adults, but Higher Cardiorespiratory Fitness Did. A Generation 100 Substudy. Frontiers in Aging Neuroscience, 2021, 13, 742587.	1.7	11
204	Effects of 5 Years Aerobic Exercise on Cognition in Older Adults: The Generation 100 Study: A Randomized Controlled Trial. Sports Medicine, 2022, 52, 1689-1699.	3.1	11
205	Atrial Myocyte Function and Ca2+ Handling Is Associated with Inborn Aerobic Capacity. PLoS ONE, 2013, 8, e76568.	1.1	10
206	Role of KATP Channels in Beneficial Effects of Exercise in Ischemic Heart Failure. Medicine and Science in Sports and Exercise, 2015, 47, 2504-2512.	0.2	10
207	Exercise Training Normalizes Timing of Left Ventricular Untwist Rate, but Not Peak Untwist Rate, in Individuals with Type 2 Diabetes and Diastolic Dysfunction: A Pilot Study. Journal of the American Society of Echocardiography, 2016, 29, 421-430.e2.	1.2	10
208	Combined Association of Cardiorespiratory Fitness and Body Fatness With Cardiometabolic Risk Factors in Older Norwegian Adults: The Generation 100 Study. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2017, 1, 67-77.	1.2	10
209	Personal activity intelligence and mortality – Data from the Aerobics Center Longitudinal Study. Progress in Cardiovascular Diseases, 2021, 64, 121-126.	1.6	10
210	High-Intensity Interval Training in Patients with Pulmonary Embolism: A Randomized Controlled Trial. Medicine and Science in Sports and Exercise, 2021, 53, 2037-2044.	0.2	10
211	Variability of echocardiographic measures of left ventricular diastolic function. The HUNT study. Echocardiography, 2021, 38, 901-908.	0.3	10
212	Insomnia and Endothelial Function – The HUNT 3 Fitness Study. PLoS ONE, 2012, 7, e50933.	1.1	10
213	Longitudinal study of the effect of a 5-year exercise intervention on structural brain complexity in older adults. A Generation 100 substudy. NeuroImage, 2022, 256, 119226.	2.1	10
214	Association of Telomere Length With Myocardial Infarction: A Prospective Cohort From the Population Based HUNT 2 Study. Progress in Cardiovascular Diseases, 2017, 59, 649-655.	1.6	9
215	Absolute and relative accelerometer thresholds for determining the association between physical activity and metabolic syndrome in the older adults: The Generation-100 study. BMC Geriatrics, 2017, 17, 109.	1.1	9

Exercise in medicine. Progress in Cardiovascular Diseases, 2019, 62, 85.

1.6 9

#	Article	IF	CITATIONS
217	Exercise training reveals micro-RNAs associated with improved cardiac function and electrophysiology in rats with heart failure after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2020, 148, 106-119.	0.9	9
218	An Estimation Model for Cardiorespiratory Fitness in Adults with Rheumatoid Arthritis. Medicine and Science in Sports and Exercise, 2020, 52, 1248-1255.	0.2	9
219	Blood Volume, Hemoglobin Mass, and Peak Oxygen Uptake in Older Adults: The Generation 100 Study. Frontiers in Sports and Active Living, 2021, 3, 638139.	0.9	8
220	Effect of Change in VO2max on Daily Total Energy Expenditure in a Cohort of Norwegian Men: A Randomized Pilot Study. Open Cardiovascular Medicine Journal, 2015, 9, 50-57.	0.6	8
221	Exercise-induced myofibrillar disruption with sarcolemmal integrity prior to simulated diving has no effect on vascular bubble formation in rats. European Journal of Applied Physiology, 2013, 113, 1189-1198.	1.2	7
222	High inborn aerobic capacity does not protect the heart following myocardial infarction. Journal of Applied Physiology, 2013, 115, 1788-1795.	1.2	7
223	Association between Personal Activity Intelligence (PAI) and body weight in a population free from cardiovascular disease – The HUNT study. Lancet Regional Health - Europe, The, 2021, 5, 100091.	3.0	7
224	Iron Deficiency Impacts Diastolic Function, Aerobic Exercise Capacity, and Patient Phenotyping in Heart Failure With Preserved Ejection Fraction: A Subanalysis of the OptimEx-Clin Study. Frontiers in Physiology, 2021, 12, 757268.	1.3	7
225	CENIT (Impact of Cardiac Exercise Training on Lipid Content in Coronary Atheromatous Plaques) Tj ETQq1 1 0.7 Association, 2022, 11, e024705.	84314 rgB 1.6	T /Overlock 7
226	Response to Letter Regarding Article, "Cardiovascular Risk of High- Versus Moderate-Intensity Aerobic Exercise in Coronary Heart Disease Patients― Circulation, 2013, 127, e638.	1.6	6
227	Skeletal muscle metabolism in rats with low and high intrinsic aerobic capacity: Effect of aging and exercise training. PLoS ONE, 2018, 13, e0208703.	1.1	6
228	The Effect of Exercise Intensity and Volume on Metabolic Phenotype in Patients with Metabolic Syndrome: A Randomized Controlled Trial. Metabolic Syndrome and Related Disorders, 2021, 19, 107-114.	0.5	6
229	Faster age-related decline in cardiorespiratory fitness in rheumatoid arthritis patients: an observational study in the TrÃ,ndelag Health Study. Rheumatology International, 2021, 41, 369-379.	1.5	6
230	Association Between Personal Activity Intelligence and Mortality: Population-Based China Kadoorie Biobank Study. Mayo Clinic Proceedings, 2022, 97, 668-681.	1.4	6
231	Post-dive bubble formation in rats: effects of exercise 24 h ahead repeated 30 min before the dive. Aviation, Space, and Environmental Medicine, 2006, 77, 905-8.	0.6	6
232	Endothelium and Diving. , 2007, , 497-505.		5
233	Response to Letter Regarding Article, "Aerobic Interval Training Versus Continuous Moderate Exercise as a Treatment for the Metabolic Syndrome: A Pilot Study― Circulation, 2009, 119, .	1.6	5
234	Fast food increases postprandial cardiac workload in type 2 diabetes independent of pre-exercise: A pilot study. Nutrition Journal, 2015, 14, 79.	1.5	5

#	Article	IF	CITATIONS
235	Acute exercise is not cardioprotective and may induce apoptotic signalling in heart surgery: a randomized controlled trialâ€. Interactive Cardiovascular and Thoracic Surgery, 2018, 27, 95-101.	0.5	5
236	Temporal changes in personal activity intelligence and mortality: Data from the aerobics center longitudinal study. Progress in Cardiovascular Diseases, 2021, 64, 127-134.	1.6	5
237	Effects of different exercise modalities on cardiac dysfunction in heart failure with preserved ejection fraction. ESC Heart Failure, 2021, 8, 1806-1818.	1.4	5
238	Five years of exercise intervention at different intensities and development of white matter hyperintensities in community dwelling older adults, a Generation 100 sub-study. Aging, 2022, 14, 596-622.	1.4	5
239	Cardiorespiratory fitness and the incidence of coronary surgery and postoperative mortality: the HUNT study. European Journal of Cardio-thoracic Surgery, 2022, 62, .	0.6	5
240	Surgical manipulation, but not moderate exercise, is associated with increased cytokine mRNA expression in the rat soleus muscle. Acta Physiologica Scandinavica, 2002, 175, 219-226.	2.3	4
241	A reliable and valid protocol for measuring maximal oxygen uptake in pigs. European Journal of Cardiovascular Prevention and Rehabilitation, 2009, 16, 628-632.	3.1	4
242	Letter by WislÃ,ff et al Regarding Article, "High-Intensity Interval Training in Patients With Heart Failure With Reduced Ejection Fraction― Circulation, 2017, 136, 607-608.	1.6	4
243	Exercising immune cells: The immunomodulatory role of exercise on atrial fibrillation. Progress in Cardiovascular Diseases, 2021, 68, 52-59.	1.6	4
244	Effects of a 5-Year Exercise Intervention on White Matter Microstructural Organization in Older Adults. A Generation 100 Substudy. Frontiers in Aging Neuroscience, 0, 14, .	1.7	4
245	Use of heart rate monitoring for an individualized and time-variant decompression model. European Journal of Applied Physiology, 2010, 110, 885-892.	1.2	3
246	Predictors of Beneficial Coronary Plaque Changes after Aerobic Exercise. Medicine and Science in Sports and Exercise, 2015, 47, 2251-2256.	0.2	3
247	Upper arm venous compliance and fitness in stable coronary artery disease patients and healthy controls. Clinical Physiology and Functional Imaging, 2017, 37, 498-506.	0.5	3
248	Lung function parameters improve prediction of VO2peak in an elderly population: The Generation 100 study. PLoS ONE, 2017, 12, e0174058.	1.1	3
249	Safety and efficacy of high intensity interval training in a patient with acute pulmonary embolism. Progress in Cardiovascular Diseases, 2020, 63, 393-394.	1.6	3
250	Circulating MicroRNA-210 Concentrations in Patients with Acute Heart Failure: Data from the Akershus Cardiac Examination 2 Study. Clinical Chemistry, 2021, 67, 889-898.	1.5	3
251	Exercise ending 30 min pre-dive has no effect on bubble formation in the rat. Aviation, Space, and Environmental Medicine, 2005, 76, 326-8.	0.6	3
252	Impact of different training modalities on highâ€density lipoprotein function in HFpEF patients: a substudy of the OptimEx trial. ESC Heart Failure, 2022, 9, 3019-3030.	1.4	3

#	Article	IF	CITATIONS
253	Immersion before dry simulated dive reduces cardiomyocyte function and increases mortality after decompression. Journal of Applied Physiology, 2010, 109, 752-757.	1.2	2
254	Relationship Between Anthropometric and Physiological Characteristics in Youth Soccer Players. Journal of Strength and Conditioning Research, 2011, 25, 1-2.	1.0	2
255	Computationally efficient familywise error rate control in genomeâ€wide association studies using score tests for generalized linear models. Scandinavian Journal of Statistics, 2020, 47, 1090-1113.	0.9	2
256	Circulating microRNAs May Serve as Biomarkers for Hypertensive Emergency End-Organ Injuries and Address Underlying Pathways in an Animal Model. Frontiers in Cardiovascular Medicine, 2020, 7, 626699.	1.1	2
257	The Long-term Effect of Different Exercise Intensities on High-Density Lipoprotein Cholesterol in Older Men and Women Using the Per Protocol Approach: The Generation 100 Study. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2021, 5, 859-871.	1.2	2
258	Exercise and the Endothelium. , 0, , 506-515.		1
259	Left ventricular apical rotation is related to ambulatory blood pressure and body mass in healthy elderly females. Blood Pressure, 2008, 17, 147-155.	0.7	1
260	Rebuttal from Ulrik WislÃ,ff, Jeff Coombes and Ã~ivind Rognmo. Journal of Physiology, 2015, 593, 5223-5223.	1.3	1
261	Benefit of Exercise in Atrial Fibrillation. Journal of the American College of Cardiology, 2016, 67, 1257-1258.	1.2	1
262	The association of change in peak oxygen uptake with use of psychotropics in community-dwelling older adults - The Generation 100 study. BMC Geriatrics, 2022, 22, .	1.1	1
263	Genetic Vs. Acquired Fitness: Cardiomyocyte Adaptations. , 2007, , 61-81.		0
264	Comparing Cardiorespiratory Fitness Across Populations. Chest, 2014, 146, e30.	0.4	0
265	Post-exercise breast milk: the new polypill?. Nature Metabolism, 2020, 2, 653-654.	5.1	0
266	Can a single bout of exercise prevent decompression sickness?. , 2004, , 16-17.		0
267	Working out aerobic fitness. , 2006, , 18-19.		0
268	Dynamic changes in cardiovascular function during diving and decompression at different core temperatures. FASEB Journal, 2011, 25, lb560.	0.2	0
269	Abstract 420: Characterization of Dahl Salt-Sensitive Rat Model for Heart Failure with Preserved Ejection Fraction Research: Defining Diagnostic Criteria. Hypertension, 2014, 64, .	1.3	0
270	Abstract 553: High-Intensity Interval Training Partly Restores Thrombotic Microangiopathy in an Experimental Model of Hypertensive Renal Injury. Hypertension, 2014, 64, .	1.3	0