
Shonna M Mcbride

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/584679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic Diversity among Enterococcus faecalis. PLoS ONE, 2007, 2, e582.	1.1	265
2	Cyclic Diguanylate Inversely Regulates Motility and Aggregation in Clostridium difficile. Journal of Bacteriology, 2012, 194, 3307-3316.	1.0	221
3	Integration of Metabolism and Virulence by <i>Clostridium difficile</i> CodY. Journal of Bacteriology, 2010, 192, 5350-5362.	1.0	215
4	The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. Microbiology (United Kingdom), 2011, 157, 1457-1465.	0.7	168
5	Identification of a Genetic Locus Responsible for Antimicrobial Peptide Resistance in <i>Clostridium difficile</i> . Infection and Immunity, 2011, 79, 167-176.	1.0	118
6	Conserved Oligopeptide Permeases Modulate Sporulation Initiation in Clostridium difficile. Infection and Immunity, 2014, 82, 4276-4291.	1.0	108
7	Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria. Antibiotics, 2014, 3, 461-492.	1.5	99
8	Culturing and Maintaining Clostridium difficile in an Anaerobic Environment. Journal of Visualized Experiments, 2013, , e50787.	0.2	94
9	A novel regulator controls <scp><i>C</i></scp> <i>lostridium difficile</i> sporulation, motility and toxin production. Molecular Microbiology, 2016, 100, 954-971.	1.2	90
10	Chemical and Stress Resistances of Clostridium difficile Spores and Vegetative Cells. Frontiers in Microbiology, 2016, 7, 1698.	1.5	89
11	CodY-Dependent Regulation of Sporulation in Clostridium difficile. Journal of Bacteriology, 2016, 198, 2113-2130.	1.0	87
12	Genetic Manipulation of <i>Clostridium difficile</i> . Current Protocols in Microbiology, 2011, 20, Unit 9A.2.	6.5	84
13	What's a SNP between friends: The influence of single nucleotide polymorphisms on virulence and phenotypes of <i>Clostridium difficile</i> strain 630 and derivatives. Virulence, 2017, 8, 767-781.	1.8	76
14	A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium difficile Biofilm and Toxin Production during Stationary Phase. Infection and Immunity, 2017, 85, .	1.0	74
15	The Clostridium difficile <i>cpr</i> Locus Is Regulated by a Noncontiguous Two-Component System in Response to Type A and B Lantibiotics. Journal of Bacteriology, 2013, 195, 2621-2631.	1.0	70
16	Genetic Variation and Evolution of the Pathogenicity Island of <i>Enterococcus faecalis</i> . Journal of Bacteriology, 2009, 191, 3392-3402.	1.0	64
17	Synthetic Polymers Active against <i>Clostridium difficile</i> Vegetative Cell Growth and Spore Outgrowth. Journal of the American Chemical Society, 2014, 136, 14498-14504.	6.6	62
18	Isolating and Purifying Clostridium difficile Spores. Methods in Molecular Biology, 2016, 1476, 117-128.	0.4	60

Shonna M Mcbride

#	Article	IF	CITATIONS
19	The Clostridium difficile Dlt Pathway Is Controlled by the Extracytoplasmic Function Sigma Factor Ïf ^V in Response to Lysozyme. Infection and Immunity, 2016, 84, 1902-1916.	1.0	54
20	Ethanolamine is a valuable nutrient source that impacts <i>Clostridium difficile</i> pathogenesis. Environmental Microbiology, 2018, 20, 1419-1435.	1.8	53
21	Initiation of sporulation in <i>Clostridium difficile</i> : a twist on the classic model. FEMS Microbiology Letters, 2014, 358, 110-118.	0.7	51
22	The Phosphotransfer Protein CD1492 Represses Sporulation Initiation in Clostridium difficile. Infection and Immunity, 2016, 84, 3434-3444.	1.0	50
23	Clostridioides difficile. Trends in Microbiology, 2018, 26, 1049-1050.	3.5	48
24	Immunogenicity and protective efficacy of recombinant <i>Clostridium difficile</i> flagellar protein FliC. Emerging Microbes and Infections, 2016, 5, 1-10.	3.0	44
25	Phase variation of a signal transduction system controls Clostridioides difficile colony morphology, motility, and virulence. PLoS Biology, 2019, 17, e3000379.	2.6	41
26	The Impact of pH on Clostridioides difficile Sporulation and Physiology. Applied and Environmental Microbiology, 2020, 86, .	1.4	39
27	An alkaline phosphatase reporter for use in Clostridium difficile. Anaerobe, 2015, 32, 98-104.	1.0	38
28	Functional Heterologous Protein Expression by Genetically Engineered Probiotic Yeast Saccharomyces boulardii. PLoS ONE, 2014, 9, e112660.	1.1	37
29	RstA Is a Major Regulator of Clostridioides difficile Toxin Production and Motility. MBio, 2019, 10, .	1.8	36
30	Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Microbes and Infection, 2017, 19, 238-248.	1.0	33
31	Determination of the in vitro Sporulation Frequency of Clostridium difficile. Bio-protocol, 2017, 7, .	0.2	30
32	Immunogenicity and protective efficacy of Clostridium difficile spore proteins. Anaerobe, 2016, 37, 85-95.	1.0	28
33	Effects of Surotomycin on Clostridium difficile Viability and Toxin ProductionIn Vitro. Antimicrobial Agents and Chemotherapy, 2015, 59, 4199-4205.	1.4	25
34	Genetic mechanisms governing sporulation initiation in Clostridioides difficile. Current Opinion in Microbiology, 2022, 66, 32-38.	2.3	23
35	The C. difficile clnRAB operon initiates adaptations to the host environment in response to LL-37. PLoS Pathogens, 2018, 14, e1007153.	2.1	22
36	Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation. Journal of Bacteriology, 2020, 202, .	1.0	22

Shonna M Mcbride

#	Article	IF	CITATIONS
37	Three Orphan Histidine Kinases Inhibit Clostridioides difficile Sporulation. Journal of Bacteriology, 2022, 204, e0010622.	1.0	17
38	Examination of the Clostridioides (Clostridium) difficile VanZ ortholog, CD1240. Anaerobe, 2018, 53, 108-115.	1.0	16
39	Regulation and Anaerobic Function of the <i>Clostridioides difficile</i> β-Lactamase. Antimicrobial Agents and Chemotherapy, 2019, 64, .	1.4	16
40	Identification of Functional Spo0A Residues Critical for Sporulation in Clostridioides difficile. Journal of Molecular Biology, 2022, 434, 167641.	2.0	13
41	Contributions of protein structure and gene position to the compartmentalization of the regulatory proteins ÏfEand SpollE in sporulatingBacillus subtilis. Molecular Microbiology, 2005, 57, 434-451.	1.2	11
42	c-di-GMP Inhibits Early Sporulation in Clostridioides difficile. MSphere, 2021, 6, e0091921.	1.3	11
43	Cationic Homopolymers Inhibit Spore and Vegetative Cell Growth of <i>Clostridioides difficile</i> . ACS Infectious Diseases, 2021, 7, 1236-1247.	1.8	7
44	CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile. Scientific Reports, 2021, 11, 7887.	1.6	7
45	More than One Way To Make a Spore. Microbe Magazine, 2014, 9, 153-157.	0.4	4
46	Sporulation Phenotype of a Bacillus subtilis Mutant Expressing an Unprocessable but Active Ï f E Transcription Factor. Journal of Bacteriology, 2004, 186, 1999-2005.	1.0	3
47	Genome Sequence of a Toxin-Positive Clostridium difficile Strain Isolated from Murine Feces. Genome Announcements, 2017, 5, .	0.8	2