Toshiya Otomo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5846678/publications.pdf

Version: 2024-02-01

165 papers 3,334 citations

30 h-index 197818 49 g-index

173 all docs

173 docs citations

173 times ranked

4072 citing authors

#	Article	IF	CITATIONS
1	A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nature Communications, 2019, 10, 1081.	12.8	252
2	Development Status of Software "Utsusemi―for Chopper Spectrometers at MLF, J-PARC. Journal of the Physical Society of Japan, 2013, 82, SA031.	1.6	172
3	Voronoi analysis of the structure of Cu–Zr and Ni–Zr metallic glasses. Intermetallics, 2006, 14, 893-897.	3.9	108
4	Hierarchic Structure of Shish-Kebab by Neutron Scattering in a WideQRange. Macromolecules, 2007, 40, 3650-3654.	4.8	102
5	Large-angle X-ray scattering, small-angle neutron scattering, and NMR relaxation studies on mixing states of 1,4-dioxane-water, 1,3-dioxane-water, and tetrahydrofuran-water mixtures. Journal of Molecular Liquids, 2003, 103-104, 143-159.	4.9	76
6	Structure and dynamics of hexafluoroisopropanol-water mixtures by x-ray diffraction, small-angle neutron scattering, NMR spectroscopy, and mass spectrometry. Journal of Chemical Physics, 2003, 119, 6132-6142.	3.0	70
7	Graphene-based ordered framework with a diverse range of carbon polygons formed in zeolite nanochannels. Carbon, 2018, 129, 854-862.	10.3	70
8	Characteristic fast Hâ^' ion conduction in oxygen-substituted lanthanum hydride. Nature Communications, 2019, 10, 2578.	12.8	70
9	Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex II: Neutron Scattering Instruments. Quantum Beam Science, 2017, 1, 9.	1.2	69
10	Development of data processing software for a new TOF single crystal neutron diffractometer at J-PARC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600, 195-197.	1.6	67
11	Large-Angle X-ray Scattering and Small-Angle Neutron Scattering Study on Phase Separation of Acetonitrileâ^'Water Mixtures by Addition of NaCl. Journal of Physical Chemistry B, 2001, 105, 6236-6245.	2.6	66
12	Structure Characterization and Lithiation Mechanism of Nongraphitized Carbon for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2006, 153, A914.	2.9	63
13	Hydrogen Ordering and New Polymorph of Layered Perovskite Oxyhydrides: Sr ₂ VO _{4–<i>x</i>} H _{<i>x</i>} . Journal of the American Chemical Society, 2014, 136, 7221-7224.	13.7	63
14	Nanometer-Size Effect on Hydrogen Sites in Palladium Lattice. Journal of the American Chemical Society, 2016, 138, 10238-10243.	13.7	62
15	Peculiar suppression of the specific heat and boson peak intensity of densified SiO2 glass. Physica B: Condensed Matter, 1999, 263-264, 299-302.	2.7	56
16	Thermal Properties and Mixing State of Ethylene Glycolâ [^] Water Binary Solutions by Calorimetry, Large-Angle X-ray Scattering, and Small-Angle Neutron Scattering. Journal of Physical Chemistry B, 2006, 110, 12372-12379.	2.6	53
17	NaCl-Induced Phase Separation of 1,4-Dioxaneâ^'Water Mixtures Studied by Large-Angle X-ray Scattering and Small-Angle Neutron Scattering Techniques. Journal of Physical Chemistry B, 2001, 105, 10101-10110.	2.6	51
18	Origins of peaks of graphitic and pyrrolic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary nitrogen, tertiary amine, or secondary amine?. Journal of Materials Science, 2021, 56, 15798-15811.	3.7	46

#	Article	IF	CITATIONS
19	The Design and $q<\mbox{/i>}$ Resolution of the Small and Wide Angle Neutron Scattering Instrument (TAIKAN) in J-PARC. , 2015, , .		44
20	Ultralow thermal conductivity from transverse acoustic phonon suppression in distorted crystalline \hat{l}_{\pm} -MgAgSb. Nature Communications, 2020, 11, 942.	12.8	44
21	Structural difference between liquidlike and gaslike phases in supercritical fluid. Physical Review E, 2008, 78, 051503.	2.1	41
22	Visualization of conduction pathways in lithium superionic conductors: Li2S-P2S5 glasses and Li7P3S11 glass–ceramic. Chemical Physics Letters, 2013, 584, 113-118.	2.6	40
23	Voronoi Analysis of the Structure of Ni-Zr-Al Ternary Metallic Glass. Materials Transactions, 2007, 48, 1698-1702.	1.2	38
24	True Boundary for the Formation of Homoleptic Transitionâ€Metal Hydride Complexes. Angewandte Chemie - International Edition, 2015, 54, 5650-5653.	13.8	38
25	Structure and Dynamics of Halogenoethanolâ^'Water Mixtures Studied by Large-Angle X-ray Scattering, Small-Angle Neutron Scattering, and NMR Relaxation. Journal of Physical Chemistry A, 2005, 109, 7667-7676.	2.5	37
26	Heterogeneity of acetonitrile–water mixtures in the temperature range 279–307ÂK studied by small-angle neutron scattering technique. Journal of Molecular Liquids, 2007, 136, 147-155.	4.9	36
27	From antiferromagnetic insulator to ferromagnetic metal: Effects of hydrogen substitution in LaMnAsO. Physical Review B, 2013, 87, .	3.2	35
28	Magnetic Structure and Electromagnetic Properties of LnCrAsO with a ZrCuSiAs-type Structure (Ln =) Tj ETQqC	0 0 rgBT /	Overlock 10 T
29	Density dependence of the boson peak of vitreous silica. Physica B: Condensed Matter, 2000, 284-288, 1157-1158.	2.7	33
30	Formation of novel transition metal hydride complexes with ninefold hydrogen coordination. Scientific Reports, 2017, 7, 44253.	3.3	32
31	Development of a data acquisition sub-system using DAQ-Middleware. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600, 173-175.	1.6	30
32	Crystal Structure of Li7P3S11Studied by Neutron and Synchrotron X-ray Powder Diffraction. Journal of the Physical Society of Japan, 2010, 79, 87-89.	1.6	29
33	Design and performance analyses of the new time-of-flight smaller-angle neutron scattering instrument at J-PARC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600, 111-113.	1.6	28
34	Mechanical synthesis and structural properties of the fast fluoride-ion conductor PbSnF4. Journal of Solid State Chemistry, 2017, 253, 287-293.	2.9	28
35	Zeolitic Intermetallics: LnNiSi (Ln = La–Nd). Journal of the American Chemical Society, 2019, 141, 3376-3379.	13.7	27
36	Structural Evidence for High Ionic Conductivity of Li7P3S11 Metastable Crystal. Journal of the Physical Society of Japan, 2012, 81, 044802.	1.6	26

#	Article	IF	CITATIONS
37	Large-moment antiferromagnetic order in overdoped high- <i>T</i> _c superconductor ¹⁵⁴ SmFeAsO _{$1a^2$ <i>x</i>} D _{<i>xx</i>} . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4354-E4359.	7.1	26
38	Hydride-ion-conducting K2NiF4-type Ba–Li oxyhydride solid electrolyte. Nature Materials, 2022, 21, 325-330.	27.5	26
39	Neutron Diffraction Study on the Structure of Hydrated Li ⁺ in Dilute Aqueous Solutions. Journal of Physical Chemistry B, 2018, 122, 1695-1701.	2.6	25
40	Neutron Scattering Studies on Spin-Peierls Material CuGeO3. Journal of the Physical Society of Japan, 1994, 63, 1661-1665.	1.6	24
41	Structural Investigation of Sulfonated Polyphenylene Ionomers for the Design of Better Performing Proton-Conductive Membranes. ACS Applied Polymer Materials, 2020, 2, 5558-5565.	4.4	24
42	Concentration fluctuations and cluster dynamics of 2-butoxyethanol–water mixtures by small-angle neutron scattering and neutron spin echo techniques. Journal of Molecular Liquids, 2005, 119, 125-131.	4.9	23
43	Local Structure of Li ⁺ in Concentrated Ethylene Carbonate Solutions Studied by Low-Frequency Raman Scattering and Neutron Diffraction with ⁶ Li/ ⁷ Li Isotopic Substitution Methods. Journal of Physical Chemistry B, 2017, 121, 10979-10987.	2.6	23
44	Dispersive excitation in different forms of SiO2. Journal of Non-Crystalline Solids, 2001, 293-295, 377-382.	3.1	22
45	Mixed magnetic phase in 6H-type BaFeO3â^'δ. Journal of Applied Crystallography, 2007, 40, s501-s505.	4.5	22
46	Crystal Structural Investigations for Understanding the Hydrogen Storage Properties of YMgNi ₄ -Based Alloys. ACS Omega, 2020, 5, 31192-31198.	3. 5	22
47	Experimental Visualization of Interstitialcy Diffusion Pathways in Fast-Fluoride-Ion-Conducting Solid Electrolyte Ba _{0.6} La _{0.4} F _{2.4} . ACS Applied Energy Materials, 2020, 3, 2873-2880.	5.1	22
48	Dynamical Magnetic Structure of the Spin Density Wave State in Cr. Journal of the Physical Society of Japan, 1996, 65, 1418-1426.	1.6	21
49	Structural Evidence for the Charge Disproportionation of Fe4+in BaFeO3-δ. Journal of the Physical Society of Japan, 2003, 72, 2024-2028.	1.6	21
50	Large Magnetovolume Effect Induced by Embedding Ferromagnetic Clusters into Antiferromagnetic Matrix of Cobaltite Perovskite. Advanced Materials, 2017, 29, 1605991.	21.0	21
51	Insights from abÂinitio molecular dynamics simulations for a multicomponent oxide glass. Journal of the American Ceramic Society, 2018, 101, 1122-1134.	3.8	21
52	Alkali chlorides-induced phase separation of acetonitrile–water mixtures studied by small-angle neutron scattering. Journal of Molecular Liquids, 2007, 131-132, 131-138.	4.9	20
53	Visibility Estimation for Neutron Resonance Absorption Radiography using a Pulsed Neutron Source. Physics Procedia, 2013, 43, 111-120.	1.2	20
54	AgFeOF ₂ : A Fluorine-Rich Perovskite Oxyfluoride. Inorganic Chemistry, 2018, 57, 6686-6691.	4.0	20

#	Article	IF	Citations
55	Strain-induced creation and switching of anion vacancy layers in perovskite oxynitrides. Nature Communications, 2020, 11, 5923.	12.8	20
56	Novel dynamics of vitreous silica and metallic glass. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 1733-1739.	0.6	17
57	Analysis of Prepeak Structure of Concentrated Organic Lithium Electrolyte by Means of Neutron Diffraction with Isotopic Substitution and Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2017, 121, 5355-5362.	2.6	17
58	Effect of low-energy dynamics on anomalous vibrational amplitudes in vitreous silica. Physical Review B, 2002, 66, .	3.2	16
59	Local structure of BaFeO3\$minus;\$delta; studied by neutron scattering. Physica B: Condensed Matter, 2003, 329-333, 807-808.	2.7	16
60	Neutron Diffraction Study on the Structure of Aqueous LiNO3 Solutions. Journal of Solution Chemistry, 2014, 43, 1588-1600.	1.2	16
61	Metallic Intermediate Hydride Phase of LaMg ₂ Ni with Niâ€"H Covalent Bonding: Precursor State for Complex Hydride Formation. Journal of Physical Chemistry C, 2016, 120, 5926-5931.	3.1	16
62	Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex III: Neutron Devices and Computational and Sample Environments. Quantum Beam Science, 2017, 1, 10.	1.2	16
63	Observation of collective excitations in the amorphous alloy Ni67Zr33. Journal of Non-Crystalline Solids, 1998, 232-234, 613-618.	3.1	15
64	Neutron-scattering studies on carbon anode materials used in lithium-ion batteries. Applied Physics A: Materials Science and Processing, 2002, 74, s1028-s1030.	2.3	15
65	Enhanced Electrical Conductivities of Complex Hydrides Li ₂ (BH ₄)(NH ₂) and Li ₄ (BH ₄)(NH ₂) ₃ by Melting. Materials Transactions, 2011, 52, 654-657.	1.2 gt;	15
66	Nephelauxetic effect of the hydride ligand in Sr ₂ LiSiO ₄ H as a host material for rare-earth-activated phosphors. RSC Advances, 2019, 9, 5282-5287.	3.6	15
67	Rational Synthesis for a Noble Metal Carbide. Journal of the American Chemical Society, 2020, 142, 1247-1253.	13.7	15
68	Dynamical properties of vitreous silica around the first sharp diffraction peak. Physical Review B, 2003, 67, .	3.2	14
69	Topological characterization of metallic glasses by neutron diffraction and RMC modeling. Physica B: Condensed Matter, 2006, 385-386, 259-262.	2.7	14
70	For high-pressure experiments using total scattering spectrometer NOVA at J-PARC. Journal of Physics: Conference Series, 2010, 215, 012024.	0.4	14
71	Local Lattice Distortion Caused by Short Range Charge Ordering in LiMn ₂ O ₄ . Journal of the Physical Society of Japan, 2013, 82, 094601.	1.6	14
72	Small-Angle Neutron Scattering Study on Aggregation in Acetonitrile–D2O and Acetonitrile–D2O–NaCl Mixtures. Chemistry Letters, 2000, 29, 878-879.	1.3	13

#	Article	IF	Citations
73	Colloidal silver iodide: synthesis by a reverse micelle method and investigation by a small-angle neutron scattering study. Journal of Electroanalytical Chemistry, 2003, 559, 103-109.	3.8	13
74	Further Understanding of Reaction Processes in Electrolytic Manganese Dioxide Electrodes for Lithium Cells. Journal of the Electrochemical Society, 2005, 152, E230.	2.9	13
75	Stability of neutron beam monitor for High Intensity Total Diffractometer at J-PARC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 672, 75-81.	1.6	13
76	An Anti CuO ₂ â€type Metal Hydride Square Net Structure in Ln ₂ M ₂ As ₂ H _{<i>x</i>} (Ln=La or Sm, M=Ti, V, Cr, or Mn). Angewandte Chemie - International Edition, 2015, 54, 2932-2935.	13.8	13
77	Microscopic Structure of Contact Ion Pairs in Concentrated LiCl- and LiClO ₄ -Tetrahydrofuran Solutions Studied by Low-Frequency Isotropic Raman Scattering and Neutron Diffraction with ⁶ Li/ ⁷ Li Isotopic Substitution Methods. Journal of Physical Chemistry B. 2016. 120. 4668-4678.	2.6	13
78	In-situ powder neutron diffraction study on the formation process of LaMg 2 NiH 7. International Journal of Hydrogen Energy, 2017, 42, 22449-22453.	7.1	13
79	Microinhomogeneity for Aqueous Mixtures of Water-miscible Organic Solvents. Journal of the Ceramic Society of Japan, 2007, 115, 861-866.	1.1	12
80	Structural and Hydrogen Desorption Properties of Aluminum Hydride. Materials Transactions, 2011, 52, 598-601.	1.2	12
81	Structural and Electrochemical Properties of Tysonite Ce0.95A0.05F2.95 (A = Mg, Ca, Sr, and Ba): Fast-Fluoride-Ion-Conducting Solid Electrolytes. Journal of Physical Chemistry C, 2020, 124, 18452-18461.	3.1	12
82	Investigation on permanently densified vitreous silica by means of neutron scattering. Physica B: Condensed Matter, 1996, 219-220, 287-289.	2.7	11
83	Local Structural Analysis on Decomposition Process of LiAl(ND ₂) ₄ . Materials Transactions, 2014, 55, 1129-1133.	1.2	11
84	Structural Variation of Self-Organized Mg Hydride Nanoclusters in Immiscible Ti Matrix by Hydrogenation. Inorganic Chemistry, 2018, 57, 11831-11838.	4.0	11
85	Dihydrogen Bonds in Aqueous NaBD4 Solution by Neutron and X-ray Diffraction. Journal of Physical Chemistry Letters, 2020, 11, 1622-1628.	4.6	11
86	Strong lattice anharmonicity exhibited by the high-energy optical phonons in thermoelectric material. New Journal of Physics, 2020, 22, 083083.	2.9	11
87	Displacement of hydrogen position in di-hydride of V-Ti-Cr solid solution alloys. Acta Materialia, 2022, 234, 118055.	7.9	11
88	Comparison of DMSO-induced denaturation of hen egg-white lysozyme and bovine α-lactalbumin. Journal of Physics and Chemistry of Solids, 1999, 60, 1379-1381.	4.0	10
89	Microscopic Charge Separation in Tb1-xCaxMnO3 (x $\hat{a}^{1}/41$). Journal of the Physical Society of Japan, 2002, 71, 27-30.	1.6	10
90	Partial Pair Correlation Functions of Low-Density Supercritical Water Determined by Neutron Diffraction with the H/D Isotopic Substitution Method. Journal of Physical Chemistry B, 2008, 112, 4687-4693.	2.6	10

#	Article	IF	CITATIONS
91	Structural and electrochemical features of (Li2S) (SiS2)100– superionic glasses. Solid State Ionics, 2020, 344, 115141.	2.7	10
92	Stabilization Factor of Anion-Excess Fluorite Phase for Fast Anion Conduction. Chemistry of Materials, 2021, 33, 1867-1874.	6.7	10
93	Hydrogen storage by earth-abundant metals, synthesis and characterization of Al3FeH3.9. Materials and Design, 2021, 208, 109953.	7.0	10
94	Monte-Carlo simulation codes development and their applications to neutron optical devices and neutron scattering instruments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 529, 223-230.	1.6	9
95	Design of a neutron polarizer using polarizing super mirrors for the TOF-SANS instrument at the J-PARC. Physica B: Condensed Matter, 2009, 404, 2640-2642.	2.7	9
96	Neutron Diffraction Study on Partial Pair Correlation Functions of Water at Ambient Temperature. Bulletin of the Chemical Society of Japan, 2018, 91, 1586-1595.	3.2	9
97	Local Structure of Li ⁺ in Superconcentrated Aqueous LiTFSA Solutions. Journal of Physical Chemistry B, 2021, 125, 7477-7484.	2.6	9
98	High-pressure Synthesis of Ba2CoO2Ag2Te2 with Extended CoO2 Planes. Inorganic Chemistry, 2020, 59, 8121-8126.	4.0	9
99	Solvation Structure of Li ⁺ in Concentrated Acetonitrile and <i>N</i> , <i>N</i> ,Ci>N,Ci <n< i="">,Ci<n< td=""><td>2.6</td><td>9</td></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<>	2.6	9
100	Spin Dynamics in anS=2Heisenberg Antiferromagnetic Chain, CsCrCl3. Journal of the Physical Society of Japan, 1997, 66, 455-459.	1.6	8
101	An experimental approach to reveal the origin of collective excitations in Ni33Zr67 metallic glass. Journal of Non-Crystalline Solids, 2002, 312-314, 599-602.	3.1	8
102	Cubic Fluorite-Type CaH ₂ with a Small Bandgap. Journal of the American Chemical Society, 2017, 139, 11317-11320.	13.7	8
103	Alternative Equation on Magnetic Pair Distribution Function for Quantitative Analysis. Journal of the Physical Society of Japan, 2017, 86, 124708.	1.6	8
104	Electrochemical, Thermal, and Structural Features of BaF ₂ â€"SnF ₂ Fluoride-Ion Electrolytes. Journal of Physical Chemistry C, 2021, 125, 12568-12577.	3.1	8
105	Elastic and dynamical structural properties of La and Mn-doped SrTiO3 studied by neutron scattering and their relation with thermal conductivities. Scientific Reports, 2018, 8, 9651.	3.3	7
106	Polar nano-region structure in the oxynitride perovskite LaTiO ₂ N. Chemical Communications, 2020, 56, 1385-1388.	4.1	7
107	Structural Studies of Hydrogen Storage Materials with Neutron Diffraction: A Review. Journal of the Physical Society of Japan, 2020, 89, 051001.	1.6	7
108	Overview of the High-Intensity Total Diffractometer at J-PARC and Structural Study of Hydrogen Absorbing Materials. Nihon Kessho Gakkaishi, 2008, 50, 29-34.	0.0	7

#	Article	IF	CITATIONS
109	Object-oriented data analysis environment for neutron scattering. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 534, 175-179.	1.6	6
110	Designed Performance of High Resolution Chopper Spectrometer at J-PARC. Journal of Neutron Research, 2005, 13, 59-62.	1.1	6
111	Observation of microstructure of hydrated Ca3SiO5. Physica B: Condensed Matter, 2006, 385-386, 517-519.	2.7	6
112	Object-oriented data analysis framework for neutron scattering experiments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600, 123-125.	1.6	6
113	Local atomic structural investigations of precursory phenomenon of the hydrogen release from LiAlD4. Journal of Alloys and Compounds, 2014, 586, 244-247.	5.5	6
114	A case of multifunctional intermetallic compounds: negative thermal expansion coupling with magnetocaloric effect in (Gd,Ho)(Co,Fe)2. Inorganic Chemistry Frontiers, 2019, 6, 3146-3151.	6.0	6
115	Origin of the Difference in Ion-Water Distances Determined by X-ray and Neutron Diffraction Measurements for Aqueous NaCl and KCl Solutions. Bulletin of the Chemical Society of Japan, 2019, 92, 754-767.	3.2	6
116	Titanium Hydride Complex BaCa2Ti2H14 with 9-Fold Coordination. Inorganic Chemistry, 2020, 59, 4228-4233.	4.0	6
117	Suppression of the Phase Coexistence of the fcc–fct Transition in Hafnium-Hydride Thin Films. Journal of Physical Chemistry Letters, 2021, 12, 10969-10974.	4.6	6
118	Neutron scattering on a re-entrant binary liquid mixture. Chemical Physics, 2003, 292, 273-281.	1.9	5
119	Structural Observation and RMC Modeling for Ni-Zr and Cu-Zr Metallic Glasses. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 217-220.	0.1	5
120	Shape of $\hat{l}\pm$ -crystallin analyzed by small-angle neutron scattering. Journal of Applied Crystallography, 2007, 40, s200-s204.	4.5	5
121	An Anti CuO ₂ â€type Metal Hydride Square Net Structure in Ln ₂ M ₂ As ₂ H _{<i>x</i>} (Ln=La or Sm, M=Ti, V, Cr, or Mn). Angewandte Chemie, 2015, 127, 2975-2978.	2.0	5
122	Facile Synthesis of LiH-Stabilized Face-Centered-Cubic YH ₃ High-Pressure Phase by Ball Milling Process. Inorganic Chemistry, 2019, 58, 13102-13107.	4.0	5
123	Hydrogenâ€Release Reaction of a Complex Transition Metal Hydride with Covalently Bound Hydrogen and Hydride Ions. ChemPhysChem, 2019, 20, 1392-1397.	2.1	5
124	Strong anharmonicity in tin monosulfide evidenced by local distortion, high-energy optical phonons, and anharmonic potential. Physical Review B, 2021, 103, .	3.2	5
125	Experimental Determination of Relationship between Intramolecular O–D Bond Length and Its Stretching Vibrational Frequency of D ₂ O Molecule in the Liquid State. Journal of Physical Chemistry B, 2021, 125, 11285-11291.	2.6	5
126	Transformation of the Chromium Coordination Environment in LaCrAsO Induced by Hydride Doping: Formation of La2Cr2As2OyHx. Inorganic Chemistry, 2017, 56, 13642-13645.	4.0	4

#	Article	IF	Citations
127	Generating Mechanism of Catalytic Effect for Hydrogen Absorption/Desorption Reactions in NaAlH4–TiCl3. Applied Sciences (Switzerland), 2021, 11, 8349.	2.5	4
128	Direct Observation of Scattering Angle Dependence of the Inelasticity Effect on the Interference Term Obtained from Time-of-Flight Neutron Diffraction Experiments. Bulletin of the Chemical Society of Japan, 2021, 94, 2800-2806.	3.2	4
129	Foresights of Neutron Total Scattering Experiment at J-PARC. Radioisotopes, 2011, 60, 35-46.	0.2	4
130	Structural study on Zr0.39Ni0.61 and (Zr0.39Ni0.61)D0.59 amorphous alloys by neutron and X-ray diffraction. Journal of Alloys and Compounds, 2009, 483, 213-216.	5.5	3
131	Multimode hydriding/dehydriding reactions of CaPd. Chemical Communications, 2010, 46, 8380.	4.1	3
132	Structural and Thermodynamic Studies of Hydrogen Absorption/Desorption Processes on PdPt Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 9471-9478.	3.1	3
133	Reversible thermally controlled spontaneous magnetization switching in perovskite-type manganite. Applied Physics Letters, 2020, 117, 112404.	3.3	3
134	The Control Software Framework of the Web Base. , 2015, , .		3
135	Examination of gas desorption by B4C resin for use in neutron scattering experiment. Review of Scientific Instruments, 2011, 82, 095109.	1.3	2
136	New LaMAsHx(M = Co, Ni, or Cu) Arsenides with Covalent Mâ€"H Chains. Journal of the American Chemical Society, 2014, 136, 17390-17393.	13.7	2
137	Local Structural Analysis of Half-Metallic Ferromagnet CrO ₂ . Journal of the Physical Society of Japan, 2016, 85, 094709.	1.6	2
138	Solvation Structure of Li $<$ sup $>+<$ sup $>$ in Methanol and 2-Propanol Solutions Studied by ATR-IR and Neutron Diffraction with $<$ sup $>6<$ sup $>Li$ $<$ sup $>7<$ sup $>Li$ Isotopic Substitution Methods. Journal of Physical Chemistry B, 2019, 123, 4967-4975.	2.6	2
139	Magnetic Pair Distribution Function of Spin-glass System Mn _{0.5} Fe _{TiO₃., 2021,,.}		2
140	Structural Properties of (Ti, Zr)(Mn,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 232 Td (Cr) ₂ & Element. Materials Transactions, 2021, 62, 899-904.	lt;i>M& 1.2	.lt;/i> <s 2</s
141	High-Pressure Synthesis of Transition-Metal Oxyhydrides with Double-Perovskite Structures. Inorganic Chemistry, 2022, 61, 2010-2016.	4.0	2
142	Small-Angle Neutron Scattering Study of Sputter-Deposited Fe30Cu70Thin Films. Journal of the Physical Society of Japan, 1998, 67, 1498-1499.	1.6	1
143	Neutron Diffraction with an Excess-Water Cell. Journal of Biological Physics, 2005, 31, 207-218.	1.5	1
144	The Design of the Neutron Total Scattering Spectrometer for Hydrogenous Materials at J-PARC-JSNS. Journal of Neutron Research, 2005, 13, 123-128.	1.1	1

#	Article	IF	CITATIONS
145	Newly Designed Neutron Diffraction Cell for Fluids at High Temperatures and High Pressures. Japanese Journal of Applied Physics, 2010, 49, 016602.	1.5	1
146	Reverse Monte Carlo modeling of atomic configuration for Li2S-P2S5superionic glasses. IOP Conference Series: Materials Science and Engineering, 2011, 18, 022012.	0.6	1
147	Ferrimagnetic Cage Framework in Ca ₁₂ Fecsub>10Si ₄ O ₃₂ Cl ₆ . Inorganic Chemistry, 2017, 56, 566-572.	4.0	1
148	Phase transition in CaFeAsH: bridging 1111 and 122 iron-based superconductors. Dalton Transactions, 2018, 47, 12964-12971.	3.3	1
149	Average and local structures of \hat{l}^2 -phase CeZrO4 crystals by neutron powder diffraction. CrystEngComm, 2019, 21, 6335-6339.	2.6	1
150	Zirconium hydride-stabilized yttrium hydride (ZSY): Stabilization of a face-centered cubic YH3 phase by Zr substitution. Journal of Alloys and Compounds, 2021, 851, 156071.	5.5	1
151	Detailed Investigations on Short- and Intermediate-Range Structures of Ge–Se Glasses near the Stiffness Transition Composition. Journal of the Physical Society of Japan, 2021, 90, 024601.	1.6	1
152	Static and Dynamic Structure Analysis of Intermediate Water on Polyvinyl Pyrrolidone Using Neutron Scattering., 2021,,.		1
153	Magnetic Structure of Short-Range Ordering in Intermetallic Antiferromagnet Mn3RhSi. Journal of the Physical Society of Japan, 2021, 90, 074710.	1.6	1
154	High Pressure Neutron Scattering Experiments on Hydrogen Storage Materials. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2009, 19, 24-30.	0.0	1
155	Phonon anomaly of under-doped YBa2Cu3O6.6 studied by neutron scattering. Physica B: Condensed Matter, 1996, 219-220, 204-206.	2.7	0
156	Medium-range structural change in the ceramization from polymer precursors. Journal of Non-Crystalline Solids, 2001, 293-295, 607-614.	3.1	0
157	Prototype of network distributed control system for MLF/J-PARC. Physica B: Condensed Matter, 2006, 385-386, 1327-1329.	2.7	0
158	Publisher's Note: From antiferromagnetic insulator to ferromagnetic metal: Effects of hydrogen substitution in LaMnAsO [Phys. Rev. B87, 020401(R) (2013)]. Physical Review B, 2013, 87, .	3.2	0
159	Effect of a Quenching Rate on Hydrogen Storage Properties of V _{0.79} Ti _{0.2} Zr _{0.01} . Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 131-136.	0.4	0
160	Structure Analysis by High Intensity Neutron Total Diffractometer NOVA. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2015, 66, 653-657.	0.2	0
161	Commissioning of Versatile Compact Neutron Diffractometer (VCND) at the B-3 Beam Port of Kyoto University Research Reactor (KUR)., 2021,,.		0
162	Atomic-level characterization of free volume in the structure of Cu67Zr33 amorphous alloy. Journal of Physics Condensed Matter, 2021, 33, 274001.	1.8	0

Тоѕніча Отомо

#	Article	IF	CITATIONS
163	Research and Development of Neutron Detectors, Neutron Optical Devices and Data Acquisition at J-PARC. Nihon Kessho Gakkaishi, 2008, 50, 66-71.	0.0	O
164	Neutron total scattering used for the structure analysis of carbon materials. Tanso, 2018, 2018, 217-221.	0.1	0
165	Averaged and Local Structure Analysis of Hydrogen Storage Materials by High Intensity Neutron Total Diffractometer, NOVA. Nihon Kessho Gakkaishi, 2022, 64, 174-177.	0.0	O