Christopher E Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5846446/publications.pdf

Version: 2024-02-01

83 papers 9,268 citations

47006 47 h-index 81 g-index

112 all docs

112 docs citations

112 times ranked 7995 citing authors

#	Article	IF	CITATIONS
1	FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biology, 2004, 6, 154-161.	10.3	1,175
2	Paxillin and focal adhesion signalling. Nature Cell Biology, 2000, 2, E231-E236.	10.3	709
3	Paxillin: Adapting to Change. Physiological Reviews, 2004, 84, 1315-1339.	28.8	540
4	Paxillin comes of age. Journal of Cell Science, 2008, 121, 2435-2444.	2.0	429
5	Paxillin LD4 Motif Binds PAK and PIX through a Novel 95-kD Ankyrin Repeat, ARF–GAP Protein: A Role in Cytoskeletal Remodeling. Journal of Cell Biology, 1999, 145, 851-863.	5.2	426
6	Paxillin interactions. Journal of Cell Science, 2000, 113, 4139-4140.	2.0	320
7	Characterization of Tyrosine Phosphorylation of Paxillin in Vitro by Focal Adhesion Kinase. Journal of Biological Chemistry, 1995, 270, 17437-17441.	3.4	298
8	The Adaptor Protein Paxillin Is Essential for Normal Development in the Mouse and Is a Critical Transducer of Fibronectin Signaling. Molecular and Cellular Biology, 2002, 22, 901-915.	2.3	294
9	Phosphorylation of Tyrosine Residues 31 and 118 on Paxillin Regulates Cell Migration through an Association with Crk in Nbt-II Cells. Journal of Cell Biology, 2000, 148, 957-970.	5.2	257
10	Vinculin modulation of paxillin–FAK interactions regulates ERK to control survival and motility. Journal of Cell Biology, 2004, 165, 371-381.	5.2	233
11	Actopaxin, a New Focal Adhesion Protein That Binds Paxillin Ld Motifs and Actin and Regulates Cell Adhesion. Journal of Cell Biology, 2000, 151, 1435-1448.	5. 2	189
12	Integrin-linked Kinase (ILK) Binding to Paxillin LD1 Motif Regulates ILK Localization to Focal Adhesions. Journal of Biological Chemistry, 2001, 276, 23499-23505.	3.4	189
13	Molecules in focus Paxillin. International Journal of Biochemistry and Cell Biology, 1998, 30, 955-959.	2.8	175
14	Src and FAK Kinases Cooperate to Phosphorylate Paxillin Kinase Linker, Stimulate Its Focal Adhesion Localization, and Regulate Cell Spreading and Protrusiveness. Molecular Biology of the Cell, 2005, 16, 4316-4328.	2.1	163
15	The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). Journal of Cell Biology, 2001, 154, 161-176.	5. 2	159
16	Paxillin: A cytoskeletal target for tyrosine kinases. BioEssays, 1994, 16, 47-52.	2.5	153
17	Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis. Molecular Biology of the Cell, 2011, 22, 327-341.	2.1	151
18	Paxillin-dependent Paxillin Kinase Linker and p21-Activated Kinase Localization to Focal Adhesions Involves a Multistep Activation Pathway. Molecular Biology of the Cell, 2002, 13, 1550-1565.	2.1	145

#	Article	IF	Citations
19	Quantitative Changes in Integrin and Focal Adhesion Signaling Regulate Myoblast Cell Cycle Withdrawal. Journal of Cell Biology, 1999, 144, 1295-1309.	5.2	140
20	Hic-5 promotes invadopodia formation and invasion during TGF-β–induced epithelial–mesenchymal transition. Journal of Cell Biology, 2012, 197, 421-437.	5.2	138
21	Association of Bovine Papillomavirus Type 1 E6 oncoprotein with the focal adhesion protein paxillin through a conserved protein interaction motif. Oncogene, 1998, 16, 43-52.	5.9	130
22	Serine and Threonine Phosphorylation of the Paxillin LIM Domains Regulates Paxillin Focal Adhesion Localization and Cell Adhesion to Fibronectin. Molecular Biology of the Cell, 1998, 9, 1803-1816.	2.1	125
23	Paxillin–ARF GAP signaling and the cytoskeleton. Current Opinion in Cell Biology, 2001, 13, 593-599.	5.4	122
24	Molecular Dissection of Actopaxin-Integrin-linked Kinase-Paxillin Interactions and Their Role in Subcellular Localization. Journal of Biological Chemistry, 2002, 277, 1568-1575.	3.4	120
25	Tension development during contractile stimulation of smooth muscle requires recruitment of paxillin and vinculin to the membrane. American Journal of Physiology - Cell Physiology, 2004, 286, C433-C447.	4.6	119
26	Adhesion of fibroblasts to fibronectin stimulates both serine and tyrosine phosphorylation of paxillin. Biochemical Journal, 1997, 325, 375-381.	3.7	110
27	FAK engages multiple pathways to maintain survival of fibroblasts and epithelia – differential roles for paxillin and p130Cas. Journal of Cell Science, 2009, 122, 357-367.	2.0	100
28	Localization of paxillin, a focal adhesion protein, to smooth muscle dense plaques, and the myotendinous and neuromuscular junctions of skeletal muscle. Experimental Cell Research, 1991, 192, 651-655.	2.6	96
29	Paxillin LD motifs may define a new family of protein recognition domains. Nature Structural and Molecular Biology, 1998, 5, 677-678.	8.2	95
30	Paxillin Localizes to the Lymphocyte Microtubule Organizing Center and Associates with the Microtubule Cytoskeleton. Journal of Biological Chemistry, 2000, 275, 26436-26440.	3.4	95
31	Crk Associates with a Multimolecular Paxillin/GIT2/ \hat{l}^2 -PIX Complex and Promotes Rac-dependent Relocalization of Paxillin to Focal Contacts. Molecular Biology of the Cell, 2003, 14, 2818-2831.	2.1	90
32	Paxillin-dependent stimulation of microtubule catastrophes at focal adhesion sites. Journal of Cell Science, 2008, 121, 196-204.	2.0	89
33	Hicâ€5 contributes to epithelialâ€mesenchymal transformation through a RhoA/ROCKâ€dependent pathway. Journal of Cellular Physiology, 2007, 211, 736-747.	4.1	85
34	Paxillin inhibits HDAC6 to regulate microtubule acetylation, Golgi structure, and polarized migration. Journal of Cell Biology, 2014, 206, 395-413.	5.2	81
35	The paxillin LD motifs. FEBS Letters, 2002, 513, 114-118.	2.8	79
36	Intact LIM 3 and LIM 4 Domains of Paxillin Are Required for the Association to a Novel Polyproline Region (Pro 2) of Protein-Tyrosine Phosphatase-PEST. Journal of Biological Chemistry, 1999, 274, 20550-20560.	3.4	76

#	Article	IF	CITATIONS
37	Regulation of paxillin family members during epithelial-mesenchymal transformation: a putative role for paxillin $\hat{\Gamma}$. Journal of Cell Science, 2005, 118, 4849-4863.	2.0	73
38	Diverse Roles for the Paxillin Family of Proteins in Cancer. Genes and Cancer, 2012, 3, 362-370.	1.9	68
39	Hic-5 Promotes the Hypertrophic Scar Myofibroblast Phenotype by Regulating the TGF-Î ² 1 Autocrine Loop. Journal of Investigative Dermatology, 2008, 128, 2518-2525.	0.7	66
40	LIM Domains Target Actin Regulators Paxillin and Zyxin to Sites of Stress Fiber Strain. PLoS ONE, 2013, 8, e69378.	2.5	61
41	Expression of Nonâ€Phosphorylatable Paxillin Mutants in Canine Tracheal Smooth Muscle Inhibits Tension Development. Journal of Physiology, 2003, 553, 21-35.	2.9	59
42	Paxillin is essential for PTP-PEST-dependent regulation of cell spreading and motility: a role for paxillin kinase linker. Journal of Cell Science, 2005, 118, 5835-5847.	2.0	59
43	The Integrin-linked Kinase Regulates Cell Morphology and Motility in a Rho-associated Kinase-dependent Manner. Journal of Biological Chemistry, 2004, 279, 54131-54139.	3.4	58
44	Paxillin and Hic-5 Interaction with Vinculin Is Differentially Regulated by Rac1 and RhoA. PLoS ONE, 2012, 7, e37990.	2.5	54
45	Cell motility: ARNOand ARF6 at the cutting edge. Current Biology, 2001, 11, R875-R877.	3.9	52
46	Paxillin-Kinase-Linker Tyrosine Phosphorylation Regulates Directional Cell Migration. Molecular Biology of the Cell, 2009, 20, 4706-4719.	2.1	52
47	CdGAP Associates with Actopaxin to Regulate Integrin-Dependent Changes in Cell Morphology and Motility. Current Biology, 2006, 16, 1375-1385.	3.9	51
48	The Focal Adhesion-Localized CdGAP Regulates Matrix Rigidity Sensing and Durotaxis. PLoS ONE, 2014, 9, e91815.	2.5	51
49	Activin A and TGF- \hat{l}^2 Stimulate Phosphorylation of Focal Adhesion Proteins and Cytoskeletal Reorganization in Rat Aortic Smooth Muscle Cells. Experimental Cell Research, 1999, 251, 194-202.	2.6	47
50	Phosphorylation of actopaxin regulates cell spreading and migration. Journal of Cell Biology, 2004, 166, 901-912.	5.2	45
51	Actopaxin Interacts with TESK1 to Regulate Cell Spreading on Fibronectin. Journal of Biological Chemistry, 2005, 280, 21680-21688.	3.4	45
52	Roles for the tubulin- and PTP–PEST-binding paxillin LIM domains in cell adhesion and motility. International Journal of Biochemistry and Cell Biology, 2002, 34, 855-863.	2.8	37
53	Cross talk between paxillin and Rac is critical for mediation of barrier-protective effects by oxidized phospholipids. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L593-L602.	2.9	34
54	Hic-5 expression is a major indicator of cancer cell morphology, migration, and plasticity in three-dimensional matrices. Molecular Biology of the Cell, 2018, 29, 1704-1717.	2.1	33

#	Article	IF	CITATIONS
55	Actopaxin (α-Parvin) Phosphorylation Is Required for Matrix Degradation and Cancer Cell Invasion. Journal of Biological Chemistry, 2012, 287, 37309-37320.	3.4	32
56	Hic-5 regulates fibrillar adhesion formation to control tumor extracellular matrix remodeling through interaction with tensin1. Oncogene, 2018, 37, 1699-1713.	5.9	32
57	On-command on/off switching of progenitor cell and cancer cell polarized motility and aligned morphology via a cytocompatible shape memory polymer scaffold. Biomaterials, 2017, 140, 150-161.	11.4	31
58	Myosin 1e promotes breast cancer malignancy by enhancing tumor cell proliferation and stimulating tumor cell de-differentiation. Oncotarget, 2016, 7, 46419-46432.	1.8	30
59	TGF- \hat{l}^21 Slows the Growth of Pathogenic Myofibroblasts through a Mechanism Requiring the Focal Adhesion Protein, Hic-5. Journal of Investigative Dermatology, 2008, 128, 280-291.	0.7	28
60	Paxillin family of focal adhesion adaptor proteins and regulation of cancer cell invasion. International Review of Cell and Molecular Biology, 2020, 355, 1-52.	3.2	28
61	Tyrosine-phosphorylated Hic-5 inhibits epidermal growth factor-induced lamellipodia formation. Experimental Cell Research, 2005, 311, 147-156.	2.6	26
62	Paxillin regulates cell polarization and anterograde vesicle trafficking during cell migration. Molecular Biology of the Cell, 2017, 28, 3815-3831.	2.1	26
63	Actopaxin is phosphorylated during mitosis and is a substrate for cyclin B1/cdc2 kinase. Biochemical Journal, 2002, 363, 233-242.	3.7	24
64	CdGAP regulates cell migration and adhesion dynamics in twoâ€and threeâ€dimensional matrix environments. Cytoskeleton, 2012, 69, 644-658.	2.0	15
65	Neural-specific deletion of the focal adhesion adaptor protein paxillin slows migration speed and delays cortical layer formation. Development (Cambridge), 2017, 144, 4002-4014.	2.5	15
66	Emerging role of Paxillin-PKL in regulation of cell adhesion, polarity and migration. Cell Adhesion and Migration, 2010, 4, 342-347.	2.7	13
67	The focal adhesion scaffold protein Hic-5 regulates vimentin organization in fibroblasts. Molecular Biology of the Cell, 2019, 30, 3037-3056.	2.1	13
68	Nuclear position relative to the Golgi body and nuclear orientation are differentially responsive indicators of cell polarized motility. PLoS ONE, 2019, 14, e0211408.	2.5	13
69	Epidermal growth factor stimulates serine/threonine phosphorylation of the focal adhesion protein paxillin in a MEKâ€dependent manner in normal rat kidney cells. Journal of Cellular Physiology, 2002, 191, 82-94.	4.1	12
70	Characterization of paxillin LIM domain-associated serine threonine kinases: Activation by angiotensin II in vascular smooth muscle cells. Journal of Cellular Biochemistry, 2000, 76, 99-108.	2.6	11
71	Paxillin kinase linker (PKL) regulates Vav2 signaling during cell spreading and migration. Molecular Biology of the Cell, 2013, 24, 1882-1894.	2.1	11
72	Beta2-Adaptin Binds Actopaxin and Regulates Cell Spreading, Migration and Matrix Degradation. PLoS ONE, 2012, 7, e46228.	2.5	10

#	Article	IF	Citations
73	Paxillin promotes breast tumor collective cell invasion through maintenance of adherens junction integrity. Molecular Biology of the Cell, 2022, 33, mbcE21090432.	2.1	10
74	The cell adhesion-associated protein Git2 regulates morphogenetic movements during zebrafish embryonic development. Developmental Biology, 2011, 349, 225-237.	2.0	9
75	Paxillin-dependent regulation of apical-basal polarity in mammary gland morphogenesis. Development (Cambridge), 2019, 146, .	2.5	9
76	Hic-5 regulates Src-induced invadopodia rosette formation and organization. Molecular Biology of the Cell, 2019, 30, 1298-1313.	2.1	7
77	Paxillin genes and actomyosin contractility regulate myotome morphogenesis in zebrafish. Developmental Biology, 2017, 425, 70-84.	2.0	6
78	Integrin-Linked Kinase: A Possible Role in Scar Contracture. Annals of Plastic Surgery, 2004, 52, 204-211.	0.9	5
79	Paxillin-dependent stimulation of microtubule catastrophes at focal adhesion sites. Journal of Cell Science, 2008, 121, 405-405.	2.0	5
80	Evolution and Expression of Paxillin Genes in Teleost Fish. PLoS ONE, 2016, 11, e0165266.	2.5	5
81	The Focal Adhesion. , 2010, , 1259-1264.		1
82	A Simplified System for Evaluating Cell Mechanosensing and Durotaxis In Vitro . Journal of Visualized Experiments, 2015, , e52949.	0.3	1
83	The Paxillin Family and Tissue Remodeling. , 0, , 47-69.		O