Youcef Ouerdane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5846245/publications.pdf

Version: 2024-02-01

		147726	168321
328	4,820	31	53
papers	citations	h-index	g-index
222	222	222	0000
332	332	332	2033
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Radiation Effects on Silica-Based Optical Fibers: Recent Advances and Future Challenges. IEEE Transactions on Nuclear Science, 2013, 60, 2015-2036.	1.2	366
2	Overview of radiation induced point defects in silica-based optical fibers. Reviews in Physics, 2019, 4, 100032.	4.4	208
3	Recent advances in radiation-hardened fiber-based technologies for space applications. Journal of Optics (United Kingdom), 2018, 20, 093001.	1.0	153
4	Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Optics Express, 2012, 20, 29751.	1.7	129
5	Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application. Optics Express, 2012, 20, 8457.	1.7	99
6	Radiation Effects on Silica-Based Preforms and Optical Fibers—I: Experimental Study With Canonical Samples. IEEE Transactions on Nuclear Science, 2008, 55, 3473-3482.	1.2	85
7	Gamma-rays and pulsed X-ray radiation responses of nitrogen-, germanium-doped and pure silica core optical fibers. Nuclear Instruments & Methods in Physics Research B, 2004, 215, 187-195.	0.6	78
8	Ultrafast laser induced electronic and structural modifications in bulk fused silica. Journal of Applied Physics, 2013, 114, .	1.1	76
9	Combined High Dose and Temperature Radiation Effects on Multimode Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2013, 60, 4305-4313.	1.2	71
10	Proton- and Gamma-Induced Effects on Erbium-Doped Optical Fibers. IEEE Transactions on Nuclear Science, 2007, 54, 2426-2434.	1.2	68
11	Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain. Journal of Non-Crystalline Solids, 2011, 357, 1871-1874.	1.5	66
12	Radiation Effects on Ytterbium- and Ytterbium/Erbium-Doped Double-Clad Optical Fibers. IEEE Transactions on Nuclear Science, 2009, 56, 3293-3299.	1.2	60
13	Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions. Optics Letters, 2014, 39, 2541.	1.7	60
14	<tex>\$gamma\$</tex> -Rays and Pulsed X-Ray Radiation Responses of Germanosilicate Single-Mode Optical Fibers: Influence of Cladding Codopants. Journal of Lightwave Technology, 2004, 22, 1915-1922.	2.7	58
15	Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels. Optics Letters, 2014, 39, 5313.	1.7	54
16	High Î ³ -ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors. Optics Express, 2012, 20, 26978.	1.7	53
17	Influence of Drawing Conditions on the Properties and Radiation Sensitivities of Pure-Silica-Core Optical Fibers. Journal of Lightwave Technology, 2012, 30, 1726-1732.	2.7	46
18	Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica. Optics Express, 2010, 18, 24809.	1.7	45

#	Article	IF	CITATIONS
19	Cooperative luminescence in an ytterbium-doped silica fibre. Optics Communications, 1994, 111, 310-316.	1.0	43
20	Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing. Optics Express, 2011, 19, 11680.	1.7	42
21	Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors. Scientific Reports, 2017, 7, 8766.	1.6	40
22	Multielectron capture inKr18+collisions with Kr and Ar at low energies by Rydberg transition spectroscopy. Physical Review Letters, 1990, 64, 2633-2636.	2.9	39
23	Influence of neutron and gamma-ray irradiations on rad-hard optical fiber. Optical Materials Express, 2015, 5, 898.	1.6	39
24	Development of a Temperature Distributed Monitoring System Based On Raman Scattering in Harsh Environment. IEEE Transactions on Nuclear Science, 2014, 61, 3315-3322.	1.2	38
25	Effects of stabilizer ratio on photoluminescence properties of sol-gel ZnO nano-structured thin films. Journal of Luminescence, 2015, 158, 32-37.	1.5	37
26	Transient Radiation Responses of Optical Fibers: Influence of MCVD Process Parameters. IEEE Transactions on Nuclear Science, 2012, 59, 2894-2901.	1.2	36
27	Vulnerability analysis of optical fibers for laser megajoule facility: preliminary studies. IEEE Transactions on Nuclear Science, 2005, 52, 1497-1503.	1.2	33
28	Vulnerability of OFDR-based distributed sensors to high γ-ray doses. Optics Express, 2015, 23, 18997.	1.7	33
29	France's State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes. Sensors, 2017, 17, 1377.	2.1	33
30	Radiation Effects on Silica-Based Preforms and Optical Fibers-II: Coupling <i>Ab initio</i> Simulations and Experiments. IEEE Transactions on Nuclear Science, 2008, 55, 3508-3514.	1.2	32
31	Design of Radiation-Hardened Rare-Earth Doped Amplifiers Through a Coupled Experiment/Simulation Approach. Journal of Lightwave Technology, 2013, 31, 1247-1254.	2.7	32
32	Influence of Pb doping on the structural, morphological and optical properties of sol–gel ZnO thin films. Materials Science in Semiconductor Processing, 2016, 41, 382-389.	1.9	31
33	Study of plasma expansion induced by femtosecond pulsed laser ablation and deposition of diamond-like carbon films. Applied Surface Science, 2003, 208-209, 553-560.	3.1	30
34	Discriminated measures of strain and temperature in metallic specimen with embedded superimposed long and short fibre Bragg gratings. Measurement Science and Technology, 2011, 22, 015202.	1.4	30
35	Radiation effects on optical frequency domain reflectometry fiber-based sensor. Optics Letters, 2015, 40, 4571.	1.7	30
36	Ge(2), Ge(1) and Ge-E′ centers in irradiated Ge-doped silica: a first-principles EPR study. Optical Materials Express, 2015, 5, 1054.	1.6	29

#	Article	IF	CITATIONS
37	Transient radiation responses of silica-based optical fibers: Influence of modified chemical-vapor deposition process parameters. Journal of Applied Physics, 2006, 99, 023104.	1.1	28
38	X-ray irradiation effects on fluorine-doped germanosilicate optical fibers. Optical Materials Express, 2014, 4, 1683.	1.6	28
39	Optical properties of phosphorus-related point defects in silica fiber preforms. Physical Review B, 2009, 80, .	1.1	27
40	Radiation Response of Ce-Codoped Germanosilicate and Phosphosilicate Optical Fibers. IEEE Transactions on Nuclear Science, 2016, 63, 2058-2064.	1.2	27
41	Optimized radiation-hardened erbium doped fiber amplifiers for long space missions. Journal of Applied Physics, 2017, 121, .	1.1	27
42	Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments. IEEE Transactions on Nuclear Science, 2017, 64, 68-73.	1.2	27
43	Spatial distribution of the red luminescence in pristine, γ rays and ultraviolet-irradiated multimode optical fibers. Applied Physics Letters, 2004, 84, 4215-4217. EPR parameters of <mml:math< td=""><td>1.5</td><td>26</td></mml:math<>	1.5	26
44	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>E</mml:mi> <mml:mo>â€2 in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>v</mml:mi> <mml:mo>â^' </mml:mo> <mml:msu mathvariant="normal">SiO <mml:mn>2</mml:mn> from</mml:msu </mml:math </mml:mo></mml:msup>		•
45	first-principles calculations. Physical Review B, 2014, 90, . Cerium-activated sol–gel silica glasses for radiation dosimetry in harsh environment. Materials Research Express, 2016, 3, 046201.	0.8	26
46	Beam-foil spectroscopy in the extreme UV of highly ionized silicon Si XI and the isoelectronic ions AI X, S XIII and Ar XV. Physica Scripta, 1994, 49, 571-577.	1.2	25
47	True double capture in collisions of bare and hydrogenlike ions with rare-gas atoms (Z=7–13). Physical Review A, 1994, 50, 2322-2326.	1.0	25
48	Transient radiation-induced effects on solid core microstructured optical fibers. Optics Express, 2011, 19, 21760.	1.7	25
49	Interstitial O2 distribution in amorphous SiO2 nanoparticles determined by Raman and photoluminescence spectroscopy. Journal of Applied Physics, 2013, 114, .	1.1	25
50	Photoinscription domains for ultrafast laser writing of refractive index changes in BK7 borosilicate crown optical glass. Optical Materials Express, 2013, 3, 67.	1.6	25
51	Radiation hardened high-power Er ³⁺ /Yb ³⁺ -codoped fiber amplifiers for free-space optical communications. Optics Letters, 2018, 43, 3049.	1.7	25
52	Novel Gd3+-doped silica-based optical fiber material for dosimetry in proton therapy. Scientific Reports, 2019, 9, 16376.	1.6	25
53	Liquid Resin Infusion process monitoring with superimposed Fibre Bragg Grating sensor. Polymer Testing, 2012, 31, 1045-1052.	2.3	24
54	Investigation of the writing mechanism of electric-arc-induced long-period fiber gratings. Applied Optics, 2003, 42, 3776.	2.1	23

#	Article	IF	CITATIONS
55	Optimization of the Design of High Power <formula formulatype="inline"><tex Notation="TeX"> \$hbox{Er}^{3+}/hbox{Yb}^{3+}\$</tex </formula> -Codoped Fiber Amplifiers for Space Missions by Means of Particle Swarm Approach. IEEE Journal of Selected Topics in Ouantum Electronics, 2014, 20, 484-491.	1.9	23
56	Coupled Theoretical and Experimental Studies for the Radiation Hardening of Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2014, 61, 1819-1825.	1.2	23
57	Oxygen deficient centers in silica: optical properties within many-body perturbation theory. Journal of Physics Condensed Matter, 2013, 25, 335502.	0.7	22
58	Radiation Vulnerability of Fiber Bragg Gratings in Harsh Environments. Journal of Lightwave Technology, 2015, 33, 2646-2651.	2.7	22
59	Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry. Optical Materials, 2016, 51, 104-109.	1.7	22
60	Irradiation induced defects in fluorine doped silica. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 2918-2922.	0.6	21
61	Radiation effects on Yb- and Er/Yb-doped optical fibers: A micro-luminescence study. Journal of Non-Crystalline Solids, 2009, 355, 1085-1088.	1.5	21
62	X-ray irradiation effects on a multistep Ge-doped silica fiber produced using different drawing conditions. Journal of Non-Crystalline Solids, 2011, 357, 1966-1970.	1.5	21
63	Integration of Optical Fibers in Megajoule Class Laser Environments: Advantages and Limitations. IEEE Transactions on Nuclear Science, 2012, 59, 1317-1322.	1.2	21
64	Neutron Irradiation Effects on the Structural Properties of KU1, KS-4V and I301 Silica Glasses. IEEE Transactions on Nuclear Science, 2014, 61, 1522-1530.	1.2	21
65	Stabilized double-electron capture inKrq+(q=17,18)–Kr collisions. Physical Review A, 1993, 48, 1171-1175.	1.0	20
66	Properties of phosphorus-related defects induced by Î ³ -rays and pulsed X-ray irradiation in germanosilicate optical fibers. Journal of Non-Crystalline Solids, 2003, 322, 78-83.	1.5	20
67	Influence of the drawing process on the defect generation in multistep-index germanium-doped optical fibers. Optics Letters, 2009, 34, 2282.	1.7	20
68	Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms. Journal of Applied Physics, 2010, 108, .	1.1	20
69	Potential of Copper- and Cerium-Doped Optical Fiber Materials for Proton Beam Monitoring. IEEE Transactions on Nuclear Science, 2017, 64, 567-573.	1.2	20
70	Radioluminescence and Optically Stimulated Luminescence Responses of a Cerium-Doped Sol-Gel Silica Glass Under X-Ray Beam Irradiation. IEEE Transactions on Nuclear Science, 2018, 65, 1591-1597.	1.2	20
71	Growth and Decay Kinetics of Radiation-Induced Attenuation in Bulk Optical Materials. IEEE Transactions on Nuclear Science, 2018, 65, 1612-1618.	1.2	20
72	Gamma radiation induced loss in erbium doped optical fibers. Journal of Non-Crystalline Solids, 2007, 353, 477-480.	1.5	19

#	Article	IF	CITATIONS
73	Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2. Journal of Non-Crystalline Solids, 2009, 355, 1089-1091.	1.5	19
74	First principles study of oxygen-deficient centers in pure and Ge-doped silica. Journal of Non-Crystalline Solids, 2011, 357, 1994-1999.	1.5	19
75	Origin of the visible absorption in radiation-resistant optical fibers. Optical Materials Express, 2013, 3, 1769.	1.6	19
76	Effects of Radiation and Hydrogen-Loading on the Performances of Raman-Distributed Temperature Fiber Sensors. Journal of Lightwave Technology, 2015, 33, 2432-2438.	2.7	19
77	High Total Ionizing Dose and Temperature Effects on Micro- and Nano-Electronic Devices. IEEE Transactions on Nuclear Science, 2015, 62, 1226-1232.	1.2	19
78	Double Rydberg states of high angular momentum (l=6–8) produced in Ar viii byAr9+-Cs collisions. Physical Review Letters, 1989, 62, 2112-2115.	2.9	18
79	Core Versus Cladding Effects of Proton Irradiation on Erbium-Doped Optical Fiber: Micro-Luminescence Study. IEEE Transactions on Nuclear Science, 2008, 55, 2223-2228.	1.2	18
80	Industrial Qualification Process for Optical Fibers Distributed Strain and Temperature Sensing in Nuclear Waste Repositories. Journal of Sensors, 2012, 2012, 1-9.	0.6	18
81	Influence of photo-inscription conditions on the radiation-response of fiber Bragg gratings. Optics Express, 2015, 23, 8659.	1.7	18
82	X-rays, Î ³ -rays, electrons and protons radiation-induced changes on the lifetimes of Er 3+ and Yb 3+ ions in silica-based optical fibers. Journal of Luminescence, 2018, 195, 402-407.	1.5	18
83	Generation of an ordered layer of silver nanoparticles in mesostructured dielectric films. Journal of Nanoparticle Research, 2010, 12, 1073-1082.	0.8	17
84	Influence of the Manufacturing Process on the Radiation Sensitivity of Fluorine-Doped Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2012, 59, 760-766.	1.2	17
85	Proton Irradiation Response of Hole-Assisted Carbon Coated Erbium-Doped Fiber Amplifiers. IEEE Transactions on Nuclear Science, 2014, 61, 3309-3314.	1.2	17
86	Influence of <formula formulatype="inline"><tex Notation="TeX">\${hbox{O}}_2\$</tex </formula> -Loading Pretreatment on the Radiation Response of Pure and Fluorine-Doped Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2014, 61, 3302-3308.	1.2	17
87	Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers. Journal of Applied Physics, 2015, 118, .	1.1	17
88	Origins of radiation-induced attenuation in pure-silica-core and Ge-doped optical fibers under pulsed x-ray irradiation. Journal of Applied Physics, 2020, 128, .	1.1	17
89	Extreme Radiation Sensitivity of Ultra-Low Loss Pure-Silica-Core Optical Fibers at Low Dose Levels and Infrared Wavelengths. Sensors, 2020, 20, 7254.	2.1	17
90	-radiation-induced attenuation in photonic crystal fibre. Electronics Letters, 2002, 38, 1169.	0.5	16

6

#	Article	IF	CITATIONS
91	O ₂ -Loading Treatment of Ge-Doped Silica Fibers: A Radiation Hardening Process. Journal of Lightwave Technology, 2016, 34, 2311-2316.	2.7	16
92	Radiation-Induced Attenuation in Single-Mode Phosphosilicate Optical Fibers for Radiation Detection. IEEE Transactions on Nuclear Science, 2018, 65, 126-131.	1.2	16
93	Combined Temperature and Radiation Effects on Radiation-Sensitive Single-Mode Optical Fibers. IEEE Transactions on Nuclear Science, 2020, 67, 1643-1649.	1.2	16
94	Rydberg spectroscopy of single-electron capture in low-energy collisions ofAr9+andAr8+with cesium. Physical Review A, 1992, 46, 1316-1320.	1.0	15
95	Radiation Hardened Optical Frequency Domain Reflectometry Distributed Temperature Fiber-Based Sensors. IEEE Transactions on Nuclear Science, 2015, 62, 2988-2994.	1.2	15
96	Radiation Characterization of Optical Frequency Domain Reflectometry Fiber-Based Distributed Sensors. IEEE Transactions on Nuclear Science, 2016, 63, 1688-1693.	1.2	15
97	Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms. Nanotechnology, 2017, 28, 195202.	1.3	15
98	Near-IR- and UV-femtosecond laser waveguide inscription in silica glasses. Optical Materials Express, 2019, 9, 4624.	1.6	15
99	Visible emission processes in heavily doped Er/Yb silica optical fibers. Journal of Alloys and Compounds, 1998, 275-277, 276-278.	2.8	14
100	Polarizing grating mirror for CW Nd:YAG microchip lasers. IEEE Photonics Technology Letters, 2000, 12, 648-650.	1.3	14
101	Pulsed X-ray and /spl gamma/ rays irradiation effects on polarization-maintaining optical fibers. IEEE Transactions on Nuclear Science, 2004, 51, 2740-2746.	1.2	14
102	Influence of Ce codoping and H2 pre-loading on Er/Yb-doped fiber: Radiation response characterized by Confocal Micro-Luminescence. Journal of Non-Crystalline Solids, 2011, 357, 1963-1965.	1.5	14
103	Influence of \${m Ce}^{3+}\$ Codoping on the Photoluminescence Excitation Channels of Phosphosilicate Yb/Er-Doped Glasses. IEEE Photonics Technology Letters, 2012, 24, 509-511.	1.3	14
104	Optical diagnosis of a metabolic disease: cystinosis. Journal of Biomedical Optics, 2013, 18, 046013.	1.4	14
105	Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter. Materials Research Express, 2014, 1, 026203.	0.8	14
106	Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating-Based Sensors for Radiation Environments. IEEE Transactions on Nuclear Science, 2017, 64, 2307-2311.	1.2	14
107	Steady-State Radiation-Induced Effects on the Performances of BOTDA and BOTDR Optical Fiber Sensors. IEEE Transactions on Nuclear Science, 2018, 65, 111-118.	1.2	14
108	Rydberg transition emission after multielectron capture in low-energy collisions ofAr9+with He, Ne, and Ar. Physical Review A, 1990, 42, 6564-6569.	1.0	13

#	Article	IF	CITATIONS
109	Enhancement of Lyman-α radiation following foil-induced dissociation of fast ionic hydrogen clustersHn+. Physical Review A, 1991, 43, 121-126.	1.0	13
110	Coincidence measurements between photons, projectiles and recoil ions in low energy Kr18+ + Kr collisions. Auto-ionizing and radiative effect of multi-excited states. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 165, 441-446.	0.9	13
111	Dependence of the emission properties of the germanium lone pair center on Ge doping of silica. Journal of Physics Condensed Matter, 2011, 23, 015903.	0.7	13
112	Raman measurements in silica glasses irradiated with energetic ions. AIP Conference Proceedings, 2014, , .	0.3	13
113	Near infrared radio-luminescence of O2 loaded radiation hardened silica optical fibers: A candidate dosimeter for harsh environments. Applied Physics Letters, 2014, 105, .	1.5	13
114	Combined Temperature Radiation Effects and Influence of Drawing Conditions on Phosphorousâ€Đoped Optical Fibers. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800553.	0.8	13
115	X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica. Optical Materials Express, 2019, 9, 65.	1.6	13
116	UV assisted local crystallization in Er3+ doped oxy-fluoride glass. Journal of Non-Crystalline Solids, 2007, 353, 506-509.	1.5	12
117	Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence. Journal of Applied Physics, 2013, 113, 193107.	1.1	12
118	On-site Regeneration Technique for Hole-Assisted Optical Fibers Used In Nuclear Facilities. IEEE Transactions on Nuclear Science, 2015, 62, 2941-2947.	1.2	12
119	Investigation of Coating Impact on OFDR Optical Remote Fiber-Based Sensors Performances for Their Integration in High Temperature and Radiation Environments. Journal of Lightwave Technology, 2016, 34, 4460-4465.	2.7	12
120	On-Line Characterization of Gamma Radiation Effects on Single-Ended Raman Based Distributed Fiber Optic Sensor. IEEE Transactions on Nuclear Science, 2016, 63, 2051-2057.	1.2	12
121	Radiation Hardened Architecture of a Single-Ended Raman-Based Distributed Temperature Sensor. IEEE Transactions on Nuclear Science, 2017, 64, 54-60.	1.2	12
122	Steady Î ³ -Ray Effects on the Performance of PPP-BOTDA and TW-COTDR Fiber Sensing. Sensors, 2017, 17, 396.	2.1	12
123	X-Ray, Proton, and Electron Radiation Effects on Type I Fiber Bragg Gratings. IEEE Transactions on Nuclear Science, 2018, 65, 1632-1638.	1.2	12
124	Temperature-Dependent Modeling of Cladding-Pumped <inline-formula> <tex-math notation="LaTeX"> \$ext{Er}^{3+}\$</tex-math> </inline-formula> / <inline-formula> <tex-math notation="LaTeX">\$ext{Yb}^{3+}\$ </tex-math </inline-formula> -Codoped Fiber Amplifiers for Space Applications. Journal of Lightwave Technology, 2018, 36, 3594-3602.	2.7	12
125	Operating Temperature Range of Phosphorous-Doped Optical Fiber Dosimeters Exploiting Infrared Radiation-Induced Attenuation. IEEE Transactions on Nuclear Science, 2021, 68, 906-912.	1.2	12
126	Polarizing grating coupler for high Q laser cavities. IEEE Journal of Quantum Electronics, 2003, 39, 614-619.	1.0	11

#	Article	lF	CITATIONS
127	UV-assisted crystallisation of tellurite and germanate-based glasses. Optical Materials, 2006, 28, 1276-1279.	1.7	11
128	Evaluation of Distributed OFDR-Based Sensing Performance in Mixed Neutron/Gamma Radiation Environments. IEEE Transactions on Nuclear Science, 2017, 64, 61-67.	1.2	11
129	Vulnerability and Hardening Studies of Optical and Illumination Systems at MGy Dose Levels. IEEE Transactions on Nuclear Science, 2018, 65, 132-140.	1.2	11
130	Radiation Effects on Type I Fiber Bragg Gratings: Influence of Recoating and Irradiation Conditions. Journal of Lightwave Technology, 2018, 36, 998-1004.	2.7	11
131	Radiation Effects on Aluminosilicate Optical Fibers: Spectral Investigations From the Ultraviolet to Nearâ€Infrared Domains. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800485.	0.8	11
132	X-Rays, <inline-formula> <tex-math notation="LaTeX">\$gamma\$ </tex-math> </inline-formula> -Rays, and Proton Beam Monitoring With Multimode Nitrogen-Doped Optical Fiber. IEEE Transactions on Nuclear Science, 2019, 66, 306-311.	1.2	11
133	Hyperfine structure evolution in an electric field and determination of tensor polarizabilities in He (4) Tj ETQq1 1	0.784314 1.8	rgBT /Overlo
134	Ab initio molecular dynamics simulations of oxygen-deficient centers in pure and Ge-doped silica glasses: Structure and optical properties. Journal of Non-Crystalline Solids, 2006, 352, 2596-2600.	1.5	10
135	Spectroscopic Study of \$gamma\$-Ray and Pulsed X-Ray Radiation-Induced Point Defects in Pure-Silica-Core Optical Fibers. IEEE Transactions on Nuclear Science, 2007, 54, 1136-1142.	1.2	10
136	Effects of ionizing radiations on the optical properties of ionic copper-activated sol-gel silica glasses. Optical Materials, 2018, 75, 116-121.	1.7	10
137	Performances of Radiation-Hardened Single-Ended Raman Distributed Temperature Sensors Using Commercially Available Fibers. IEEE Transactions on Nuclear Science, 2020, 67, 305-311.	1.2	10
138	Radiation Effects on Pure-Silica Multimode Optical Fibers in the Visible and Near-Infrared Domains: Influence of OH Groups. Applied Sciences (Switzerland), 2021, 11, 2991.	1.3	10
139	Investigation of the Incorporation of Cerium Ions in MCVD-Silica Glass Preforms for Remote Optical Fiber Radiation Dosimetry. Sensors, 2021, 21, 3362.	2.1	10
140	High charge states of Xe ^{r+} recoil ions (r = 1 - 15) produced by multicapture processes in low energy Xe ²⁷⁺ collisions on Xe. Radiation Effects and Defects in Solids, 1993, 126, 337-340.	0.4	9
141	Defect radial repartitions in ultraviolet irradiated germanosilicate optical fibres. Journal of Non-Crystalline Solids, 1999, 245, 110-114.	1.5	9
142	Radial distribution of attenuation in gamma-irradiated single-mode optical fibers. Applied Physics Letters, 2003, 83, 219-221.	1.5	9
143	Ultraviolet-induced paramagnetic centers and absorption changes in singlemode Ge-doped optical fibers. Optics Express, 2006, 14, 5885.	1.7	9
144	Raman investigation of the drawing effects on Ge-doped fibers. Journal of Non-Crystalline Solids, 2011, 357. 24-27.	1.5	9

#	Article	IF	CITATIONS
145	Micro-Raman investigation of X or \hat{I}^3 irradiated Ge doped fibers. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1346-1349.	0.6	9
146	Luminescence properties of ytterbium and erbium doped silica–zirconia nanostructured optical fiber under near infrared excitation. Journal of Luminescence, 2011, 131, 2427-2431.	1.5	9
147	Identification of a soft tissue filler byex vivoconfocal microscopy and Raman spectroscopy in a case of adverse reaction to the filler. Skin Research and Technology, 2015, 21, 114-118.	0.8	9
148	Correlations between Structural and Optical Properties of Peroxy Bridges from First Principles. Journal of Physical Chemistry C, 2017, 121, 4002-4010.	1.5	9
149	Dependence of the Voids-Fiber Bragg Grating Radiation Response on Temperature, Dose, and Dose Rate. IEEE Transactions on Nuclear Science, 2018, 65, 1619-1623.	1.2	9
150	Optical absorption spectra of P defects in vitreous silica. Optical Materials Express, 2018, 8, 385.	1.6	9
151	Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing. Sensors, 2020, 20, 4510.	2.1	9
152	Steady-State X-Ray Radiation-Induced Attenuation in Canonical Optical Fibers. IEEE Transactions on Nuclear Science, 2020, 67, 1650-1657.	1.2	9
153	Photobleaching Effect on Infrared Radiation-Induced Attenuation of Germanosilicate Optical Fibers at MGy Dose Levels. IEEE Transactions on Nuclear Science, 2021, 68, 1688-1693.	1.2	9
154	Coupled temperature and \hat{I}^3 -radiation effect on silica-based optical fiber strain sensors based on Rayleigh and Brillouin scatterings. Optics Express, 2019, 27, 21608.	1.7	9
155	Gd ³⁺ -doped sol-gel silica glass for remote ionizing radiation dosimetry. OSA Continuum, 2019, 2, 715.	1.8	9
156	Temperature Dependence of Low-Dose Radiation-Induced Attenuation of Germanium-Doped Optical Fiber at Infrared Wavelengths. IEEE Transactions on Nuclear Science, 2022, 69, 512-517.	1.2	9
157	Diamond-like carbon deposited by femtosecond pulsed-laser ablation: evidence of nanocrystalline diamond. , 2002, , .		8
158	Pulsed X-Ray and Continuous Gamma Radiation Effects on Erbium Doped Optical Fibers Properties. IEEE Transactions on Nuclear Science, 2007, 54, 2598-2603.	1.2	8
159	Dose Rate Effect Comparison on the Radiation Response of Type I Fiber Bragg Gratings Written With UV cw Laser. IEEE Transactions on Nuclear Science, 2016, 63, 2046-2050.	1.2	8
160	6-MeV Electron Exposure Effects on OFDR-Based Distributed Fiber-Based Sensors. IEEE Transactions on Nuclear Science, 2018, 65, 1598-1603.	1.2	8
161	Radiation and High Temperature Effects on Regenerated Fiber Bragg Grating. Journal of Lightwave Technology, 2019, 37, 4763-4769.	2.7	8
162	Cu/Ce-co-Doped Silica Glass as Radioluminescent Material for Ionizing Radiation Dosimetry. Materials, 2020, 13, 2611.	1.3	8

#	Article	IF	CITATIONS
163	Remote Measurements of X-Rays Dose Rate Using a Cerium-Doped Air-Clad Optical Fiber. IEEE Transactions on Nuclear Science, 2020, 67, 1658-1662.	1.2	8
164	Nearâ€IR Radiationâ€Induced Attenuation of Aluminosilicate Optical Fibers. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000807.	0.8	8
165	Sol–Gel Waveguide-Based Sensor for Structural Health Monitoring on Large Surfaces in Aerospace Domain. Aerospace, 2021, 8, 109.	1.1	8
166	Temperature Influence on the Radiation Responses of Erbiumâ€Doped Fiber Amplifiers. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100002.	0.8	8
167	Combined Temperature and Radiation Effects on the Gain of Er- and Er–Yb-Doped Fiber Amplifiers. IEEE Transactions on Nuclear Science, 2021, 68, 793-800.	1.2	8
168	Photon recoil ion-projectile coincidences in multicapture processes of Kr18+ + Kr collisions: ?doubly excited Rydberg states with n=10,, 15 and 1=9,, 14?. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1991, 21, S277-S278.	1.0	7
169	Luminescence spectroscopy of point defects in silica-based optical fibers. Journal of Non-Crystalline Solids, 2005, 351, 1830-1834.	1.5	7
170	Radiation effects on rare-earth doped optical fibers. Proceedings of SPIE, 2010, , .	0.8	7
171	UV irradiation influence on stimulated Brillouin scattering in photosensitive optical fibres. Electronics Letters, 2011, 47, 132.	0.5	7
172	Phosphorous doping and drawing effects on the Raman spectroscopic properties of O = P bond in silica-based fiber and preform. Optical Materials Express, 2012, 2, 1391.	1.6	7
173	Cathodoluminescence investigation of Ge-point defects in silica-based optical fibers. Journal of Luminescence, 2016, 179, 1-7.	1.5	7
174	Optical Frequency Domain Reflectometer Distributed Sensing Using Microstructured Pure Silica Optical Fibers Under Radiations. IEEE Transactions on Nuclear Science, 2016, 63, 2038-2045.	1.2	7
175	Resonance Raman of oxygen dangling bonds in amorphous silicon dioxide. Journal of Raman Spectroscopy, 2017, 48, 230-234.	1.2	7
176	v-P2O5 micro-clustering in P-doped silica studied by a first-principles Raman investigation. Scientific Reports, 2019, 9, 7126.	1.6	7
177	Crystal Growth in Mesoporous TiO ₂ Optical Thin Films. Journal of Physical Chemistry C, 2019, 123, 6070-6079.	1.5	7
178	Pulsed Xâ€Ray Radiation Responses of Solarizationâ€Resistant Optical Fibers. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800487.	0.8	7
179	Transient and Steady-State Radiation Response of Phosphosilicate Optical Fibers: Influence of H ₂ Loading. IEEE Transactions on Nuclear Science, 2020, 67, 289-295.	1.2	7
180	Optical responses of a copper-activated sol-gel silica glass under low-dose and low-dose rate X-ray exposures. OSA Continuum, 2019, 2, 563.	1.8	7

#	Article	IF	CITATIONS
181	Time evolution of alignment and orientation in an electric field for the nD21He i levels (3â‰ ¤ â‰ §). Physical Review A, 1986, 34, 1966-1976.	1.0	6
182	Velocity dependence of stabilized double electron capture in N7+î—,Ar collisions. Nuclear Instruments & Methods in Physics Research B, 1995, 98, 270-274.	0.6	6
183	Ultraviolet-induced absorption during very short continuous exposure in Ge-doped optical fiber. Journal of Non-Crystalline Solids, 2005, 351, 1835-1839.	1.5	6
184	Investigations of the ionizing radiation induced effects in ultra-thin strained-silicon layers on insulator using confocal microscopy measurements. Journal of Non-Crystalline Solids, 2011, 357, 1989-1993.	1.5	6
185	Characterization of cutaneous foreign bodies by Raman spectroscopy. Skin Research and Technology, 2013, 19, 508-509.	0.8	6
186	Cathodoluminescence Characterization of Point Defects in Optical Fibers. IEEE Transactions on Nuclear Science, 2016, , 1-1.	1.2	6
187	Distributed Optical Fiber Sensor Allowing Temperature and Strain Discrimination in Radiation Environments. IEEE Transactions on Nuclear Science, 2019, 66, 1651-1656.	1.2	6
188	Photobleaching Effect on the Radiationâ€Induced Attenuation of an Ultralow Loss Optical Fiber at Telecommunication Wavelengths. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100518.	0.8	6
189	Distributed detection of hydrogen and deuterium diffusion into a single-mode optical fiber with chirped-pulse phase-sensitive optical time-domain reflectometry. Optics Letters, 2019, 44, 5286.	1.7	6
190	Optical Fiber-Based Monitoring of X-ray Pulse Series from a Linear Accelerator. Radiation, 2022, 2, 17-32.	0.6	6
191	Monitoring of Ultra-High Dose Rate Pulsed X-ray Facilities with Radioluminescent Nitrogen-Doped Optical Fiber. Sensors, 2022, 22, 3192.	2.1	6
192	Defects studies in silica based optical fibers by laser spectroscopy. Journal of Non-Crystalline Solids, 1997, 216, 135-139.	1.5	5
193	Luminescence spectroscopy of hydrogen-associated defects in hydrogen-loaded and heated germanosilicate optical fibres. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 2137-2143.	0.6	5
194	Collisional deactivation mechanism of luminescence in hydrogen-loaded Ge-doped fibers. Journal of Chemical Physics, 2005, 123, 214701.	1.2	5
195	Paramagnetic germanium-related centers induced by energetic radiation in optical fibers and preforms. Journal of Non-Crystalline Solids, 2009, 355, 1054-1056.	1.5	5
196	Characterization of coal tattoos by Raman spectroscopy. Skin Research and Technology, 2015, 21, 511-512.	0.8	5
197	Evidence of different red emissions in irradiated germanosilicate materials. Journal of Luminescence, 2016, 177, 127-132.	1.5	5
198	Validity of the McCumber Theory at High Temperatures in Erbium and Ytterbium-Doped Aluminosilicate Fibers. IEEE Journal of Quantum Electronics, 2018, 54, 1-7.	1.0	5

#	Article	IF	CITATIONS
199	Theoretical Investigation of Thermal Effects in High Power Er 3+ /Yb 3+ ―Codoped Doubleâ€Clad Fiber Amplifiers for Space Applications. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800582.	0.8	5
200	Irradiation Tests of Optical Fibers and Cables Devoted to Corium Monitoring in Case of a Severe Accident in a Nuclear Power Plant. IEEE Transactions on Nuclear Science, 2020, 67, 669-678.	1.2	5
201	Radiation-Response of Fiber Bragg Gratings at Low Temperatures. IEEE Transactions on Nuclear Science, 2020, 67, 1637-1642.	1.2	5
202	Temperature Effect on the Radioluminescence of Cu-, Ce-, and CuCe-Doped Silica-Based Fiber Materials. IEEE Transactions on Nuclear Science, 2021, 68, 1782-1787.	1.2	5
203	Radiation-hardened fiber Bragg gratings for space missions. , 2016, , .		5
204	Radioluminescence Response of Ce-, Cu-, and Gd-Doped Silica Glasses for Dosimetry of Pulsed Electron Beams. Sensors, 2021, 21, 7523.	2.1	5
205	Doubly excited states in lithiumlike Si XII, S XIV and Ar XVI. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1991, 21, S219-S220.	1.0	4
206	γ-ray induced GeODC(II) centers in germanium doped α-quartz crystal. Journal of Non-Crystalline Solids, 2011, 357, 3288-3291.	1.5	4
207	Radiation hardening techniques for rare-earth-based optical fibers and amplifiers. Proceedings of SPIE, 2012, , .	0.8	4
208	Ge-doped silica nanoparticles: production and characterisation. Optical Materials Express, 2016, 6, 2213.	1.6	4
209	Combined Experimental and Simulation Study of the Fiber Composition Effects on Its Brillouin Scattering Signature. Journal of Lightwave Technology, 2019, 37, 4619-4624.	2.7	4
210	Large and Versatile Plasmonic Enhancement of Photoluminescence Using Colloidal Metallic Nanocubes. Journal of Physical Chemistry C, 2021, 125, 7780-7790.	1.5	4
211	Regeneration of Fiber Bragg Gratings and Their Responses Under X-Rays. IEEE Transactions on Nuclear Science, 2021, 68, 1681-1687.	1.2	4
212	In-situ regeneration of P-doped optical fiber dosimeter. Optics Letters, 2020, 45, 5201.	1.7	4
213	Multiphoton process investigation in silica by UV femtosecond laser. Journal of Non-Crystalline Solids, 2022, 580, 121384.	1.5	4
214	Temperature Dependence of Radiation Induced Attenuation of Aluminosilicate Optical Fiber. IEEE Transactions on Nuclear Science, 2022, 69, 1515-1520.	1.2	4
215	Selective beam-gas spectroscopy of the quartet system of NV. Nuclear Instruments & Methods in Physics Research B, 1995, 98, 65-68.	0.6	3
216	Gamma and UV Radiation-Induced Color Centers in Optical Fibers. Materials Science Forum, 2005, 480-481, 323-328.	0.3	3

#	Article	IF	CITATIONS
217	Role of diffusing molecular hydrogen on relaxation processes in Ge-doped glass. Journal of Non-Crystalline Solids, 2007, 353, 447-450.	1.5	3
218	Transverse UV-laser irradiation-induced defects and absorption in a single-mode erbium-doped optical fiber. Optical Materials, 2009, 31, 1296-1299.	1.7	3
219	Vulnerability of rare-earth-doped fibers for space missions: origins of radiation-induced attenuation. , 2009, , .		3
220	Radiation effects on fiber amplifiers: design of radiation tolerant Yb/Er-based devices. , 2011, , .		3
221	Steady state \hat{I}^3 -ray radiation effects on Brillouin fiber sensors. , 2015, , .		3
222	Irradiation temperature influence on the in-situ measured radiation induced attenuation of Ge-doped fibers. IEEE Transactions on Nuclear Science, 2016, , 1-1.	1.2	3
223	Coupled irradiation-temperature effects on induced point defects in germanosilicate optical fibers. Journal of Materials Science, 2017, 52, 10697-10708.	1.7	3
224	Potential of Novel Optical Fibers for Proton Therapy Dosimetry. , 2017, , .		3
225	Radiation-Induced Effects on Fiber Bragg Gratings Inscribed in Highly Birefringent Photonic Crystal Fiber. IEEE Transactions on Nuclear Science, 2019, 66, 120-124.	1.2	3
226	How transparent film applied on dermatologic imaging devices in order to prevent infections affects image quality?. Skin Research and Technology, 2019, 25, 229-233.	0.8	3
227	Comparison between the UV and X-ray Photosensitivities of Hybrid TiO2-SiO2 Thin Layers. Materials, 2020, 13, 3730.	1.3	3
228	Ultraviolet-visible light-induced solarisation in silica-based optical fibres for indoor solar applications. Journal of Non-Crystalline Solids, 2021, 552, 120458.	1.5	3
229	Tensor polarizability measurement by a quantum beat method. Journal De Physique (Paris), Lettres, 1983, 44, 871-876.	2.8	3
230	Impact of Î ³ -rays Irradiation on Hybrid TiO2-SiO2 Sol-Gel Films Doped with RHODAMINE 6G. Materials, 2021, 14, 5754.	1.3	3
231	Regenerated Fiber Bragg Gratings under High Temperature and Radiations. , 2018, , .		3
232	Optical fibers under irradiation: quantitative assessment of the energy distribution of radiation-induced trapped states. , 2020, , .		3
233	Pulsed Xâ€Ray Radiation Response of Ultralow Loss Pureâ€Silicaâ€Core Optical Fibers. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100519.	0.8	3
234	X-Ray Radioluminescence in Diversely Doped Multimode Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2022, 69, 1625-1632.	1.2	3

#	Article	IF	CITATIONS
235	Femtosecond Direct Laser Writing of Silver Clusters in Phosphate Glasses for X-ray Spatially-Resolved Dosimetry. Chemosensors, 2022, 10, 110.	1.8	3
236	Radiation vulnerability of standard and radiation-hardened optical glasses at MGy dose: Towards the design of tolerant optical systems. Journal of Non-Crystalline Solids, 2022, 585, 121531.	1.5	3
237	High blue power influence on the visible emissions of Er3+-doped germanosilicate optical fibres. Optics Communications, 1999, 170, 235-239.	1.0	2
238	Temperature, H2 loading and ultra violet irradiation effects in germanosilicate optical fibers: laser spectroscopy measurements. Journal of Non-Crystalline Solids, 2001, 280, 277-280.	1.5	2
239	Radial distribution of proton-induced effects in erbium-doped optical fibers: micro-luminescence study. , 2007, , .		2
240	10 keV X-ray irradiation effects on phosphorus-doped fibers and preforms: Electron spin resonance and optical studies. , 2009, , .		2
241	Coupled experiment/simulation approach for the design of radiation-hardened rare-earth doped optical fibers and amplifiers. , 2011, , .		2
242	Brillouin scattering based sensor in high gamma dose environment: design and optimization of optical fiber for long-term distributed measurement. Proceedings of SPIE, 2012, , .	0.8	2
243	Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors. , 2014, , .		2
244	Radiation Response of OFDR Distributed Sensors Based on Microstructured Pure Silica Optical Fibers. , 2015, , .		2
245	HOBAN project: towards the development of radiation-tolerant fiber-based temperature sensors for nuclear industry. Proceedings of SPIE, 2015, , .	0.8	2
246	Optimization of rare-earth-doped amplifiers for space mission through a hardening-by-system strategy. , 2017, , .		2
247	Confocal-micro-luminescence characterization of femtosecond laser irradiated silica and borosilicate glasses. Nuclear Instruments & Methods in Physics Research B, 2018, 435, 251-257.	0.6	2
248	Combined Radiation and Temperature Effects on Brillouin Scattering based Sensing with Ge-Doped Optical Fibers. , 2018, , .		2
249	Influence of Selfâ€Trapped Holes on the Responses of Fluorineâ€Doped Multimode Optical Fibers Exposed to Low Fluences of Protons. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800547.	0.8	2
250	Radiation Effects on WDM and DWDM Architectures of Preamplifier and Boost-Amplifier. IEEE Transactions on Nuclear Science, 2020, 67, 278-283.	1.2	2
251	Radiation Response of Distributed Feedback Bragg Gratings for Space Applications. IEEE Transactions on Nuclear Science, 2020, 67, 284-288.	1.2	2
252	Distributed and discrete hydrogen monitoring through optical fiber sensors based on optical frequency domain reflectometry. JPhys Photonics, 2020, 2, 014009.	2.2	2

#	Article	IF	CITATIONS
253	Photoluminescence of Point Defects in Silicon Dioxide by Femtosecond Laser Exposure. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000802.	0.8	2
254	Distributed Temperature and Strain Fiber-Based Sensing in Radiation Environment. IEEE Transactions on Nuclear Science, 2021, 68, 1675-1680.	1.2	2
255	Combined Radiations and Temperature Effects on FBGs Photo-inscribed by Femtosecond Laser in Radiation-Hardened Optical Fibers. , 2018, , .		2
256	Investigations of the MGy dose level radiation effects on the photometric budget of a radiation-hardened CMOS-based camera. Applied Optics, 2019, 58, 6165.	0.9	2
257	Technology trimming of a resonant multilayer laser polarizer. , 2004, 5250, 81.		1
258	Radiation-Induced-Defects Localization in Single-Mode Optical Fibers. Materials Science Forum, 2005, 480-481, 329-332.	0.3	1
259	10 keV x-ray radiation effects on Yb- and Er/Yb-doped optical fibers: a micro-luminescence study. Proceedings of SPIE, 2008, , .	0.8	1
260	Integration of optical fibers in radiative environments: Advantages and limitations. , 2011, , .		1
261	High total ionizing dose and temperature effects on micro- and nano-electronic devices. , 2013, , .		1
262	Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers. , 2013, , .		1
263	Radiation-hardened Erbium-doped optical fibers and amplifiers for future high-dose space missions. , 2014, , .		1
264	Radiation hardening of FBG in harsh environments. Proceedings of SPIE, 2014, , .	0.8	1
265	Dose-Rate Dependence of Fiber Bragg Gratings' Responses. , 2015, , .		1
266	Cerium Codoping Effect on the Radiation Response of Germanosilicate and Phosphosilicate Multimode Optical Fibers. , 2015, , .		1
267	Coating impact and radiation effects on optical frequency domain reflectometry fiber-based temperature sensors. Proceedings of SPIE, 2015, , .	0.8	1
268	Effect of irradiation temperature on the radiation induced attenuation of Ge-doped fibers. , 2016, , .		1
269	Study of point defects in as-drawn and irradiated Ge-doped optical fibers using cathodoluminescence. IOP Conference Series: Materials Science and Engineering, 2017, 169, 012006.	0.3	1
270	Spectral properties and lifetime of green emission in Î ³ -ray irradiated bismuth-doped silica photonic crystal fibers. Journal of Non-Crystalline Solids, 2018, 482, 100-104.	1.5	1

#	Article	IF	CITATIONS
271	Study of silica-based intrinsically emitting nanoparticles produced by an excimer laser. Beilstein Journal of Nanotechnology, 2019, 10, 211-221.	1.5	1
272	Remote monitoring of Molten Core-Concrete Interaction experiment with Optical Fibre Sensors & perspectives to improve nuclear safety – DISCOMS project. EPJ Web of Conferences, 2020, 225, 08004.	0.1	1
273	Tests under irradiation of optical fibers and cables devoted to corium monitoring in case of severe accident in a Nuclear Power Plant. EPJ Web of Conferences, 2020, 225, 08006.	0.1	1
274	Transient absorption with a femtosecond tunable excitation pump reveals the emission kinetics of color centers in amorphous silica. Optics Letters, 2021, 46, 1736.	1.7	1
275	Investigation by Thermoluminescence of the Ionization and Annealing Processes in Irradiated Ge-Doped Silica Fiber Preform. IEEE Transactions on Nuclear Science, 2021, 68, 1556-1564.	1.2	1
276	Structural and optical changes in silica-based optical fibers exposed to high neutron and gamma fluences. Journal of Non-Crystalline Solids, 2021, 574, 121150.	1.5	1
277	Optical and photonic material hardness for energetic environments. , 2009, , .		1
278	Femtosecond IR laser Inscription and X-ray Radiation Response of Fiber Bragg Gratings in Aluminosilicate Optical Fibers. , 2018, , .		1
279	Radiation influence on Er/Yb doped fiber amplifiers performances: high power and WDM architectures. , 2018, , .		1
280	Potential performance loss and compensation techniques of a lens under ionizing radiations. , 2018, , .		1
281	Recent Advances on Radiation-Hardened Optical Fiber Technologies. , 2020, , .		1
282	Coupled radiation and temperature effects on Erbium-doped fiber amplifiers. , 2020, , .		1
283	Multi-Mode Interferometry: Application to TiO2–SiO2 Sol-Gel Waveguide-Based Sensing in the Aerospace Domain. Aerospace, 2021, 8, 401.	1.1	1
284	Photocycle of point defects in highly- and weakly-germanium doped silica revealed by transient absorption measurements with femtosecond tunable pump. Scientific Reports, 2022, 12, .	1.6	1
285	Fast beam quantum beat study of fine structure evolution in an electric field. Physica Scripta, 1988, 38, 543-549.	1.2	0
286	Experimental study of the beam-foil excitation mechanisms using fast He+ projectiles. Nuclear Instruments & Methods in Physics Research B, 1991, 62, 65-68.	0.6	0
287	Rydberg state population due to multicapture processes in Krq+ (q=17-18) on Kr collisions. AIP Conference Proceedings, 1993, , .	0.3	0
288	<title>Sol-gel thin films for integrated light sources in the visible range</title> . , 1997, 2997, 104.		0

17

#	Article	IF	CITATIONS
289	Photoluminescence spectroscopy of direct bonded silica based wafers. Journal of Non-Crystalline Solids, 1997, 216, 95-98.	1.5	Ο
290	IR-to-visible light conversion in doped sol gel waveguides. , 1998, 3278, 332.		0
291	Integrated polarizing function for solid state lasers. , 2003, , .		0
292	Comparaison des effets des irradiations γ, X et UV dans les fibres optiques. European Physical Journal Special Topics, 2005, 127, 139-143.	0.2	0
293	UV-photoinduced defects in Ge-doped optical fibers. , 0, , .		Ο
294	Liquid Resin Infusion process monitoring with embedded superimposed long period and short period Bragg grating sensor EPJ Web of Conferences, 2010, 6, 34003.	0.1	0
295	X-ray irradiation influence on prototype Er3+-optical fibers: confocal luminescence study. , 2010, , .		Ο
296	Influence of the manufacturing process on the radiation sensitivity of fluorine-doped silica-based optical fibers. , 2011, , .		0
297	Approche couplée pour le développement de matériaux optiques résistants aux radiations. , 2011, , .		Ο
298	In situ radiation influence on strain measurement performance of Brillouin sensors. Proceedings of SPIE, 2011, , .	0.8	0
299	Monitoring of vacuum assisted resin transfer moulding (VARTM) process with superimposed Fiber-Bragg-gratings. Proceedings of SPIE, 2011, , .	0.8	Ο
300	Neutron-induced defects in optical fibers. , 2014, , .		0
301	Radiation Induced Attenuation Kinetics in Pure-Silica-Core Optical Fibers during Successive Irradiations. , 2015, , .		0
302	Gamma radiation tests of radiation-hardened fiber Bragg grating based sensors for radiation environments. , 2016, , .		0
303	Investigation of point defects in silica-based optical fibers by cathodoluminescence. , 2016, , .		0
304	Irradiation temperature effects on the induced point defects in Ge-doped optical fibers IOP Conference Series: Materials Science and Engineering, 2017, 169, 012008.	0.3	0
305	Study of \hat{I}^3 -ray radiation effects on TW-COTDR optical fiber sensors. , 2017, , .		0
306	Radiation effects on type I fiber Bragg gratings: influence of recoating. Proceedings of SPIE, 2017, , .	0.8	0

#	Article	IF	CITATIONS
307	Ni-Ion and \$gamma\$ -Ray Irradiated Silica-Based Glasses Characterized by Luminescence and Raman Spectroscopies. IEEE Transactions on Nuclear Science, 2018, 65, 1604-1611.	1.2	0
308	Structured blue emission in Bismuth doped fibers. Optical Materials, 2018, 84, 663-667.	1.7	0
309	Ablation laser femtoseconde pour le dépôt de DLC. European Physical Journal Special Topics, 2003, 108, 33-36.	0.2	0
310	Formation et transformation de défauts ponctuels par insolation UV dans les diélectriques à base de siliceÂ: application à l'intégration de composants optiques sur fibre. European Physical Journal Special Topics, 2003, 108, 23-27.	0.2	0
311	Étude des processus photochimiques primaires dans les fibres optiques germanosilicates lors d'une insolation ultraviolette. European Physical Journal Special Topics, 2005, 127, 169-175.	0.2	ο
312	Photon recoil ion-projectile coincidences in multicapture processes of Kr18+ + Kr Collisions: "doubly excited Rydberg states with n = 10, …, 15 and 1 = 9, …, 14". , 1991, , 277-278.		0
313	Visible optical spectra of [MATH]-irradiated uranium - doped ZBLAN fibres. European Physical Journal Special Topics, 1994, 04, C4-451-C4-454.	0.2	0
314	Multiphoton absorption in Er ³⁺ doped fibres. European Physical Journal Special Topics, 1994, 04, C4-491-C4-494.	0.2	0
315	Non linear effects in monomode ytterbium doped silica fibers : cooperative luminescence. European Physical Journal Special Topics, 1994, 04, C4-545-C4-548.	0.2	0
316	LUMINESCENCE PROPERTIES OF HYDROGEN LOADED GERMANOSILICATE OPTICAL FIBERS. , 1999, , .		0
317	Recent Advances in Radiation Hardened Fiber-Based Technologies. , 2016, , .		0
318	Basic Mechanisms of Ionizing Radiation Effects on Silica-Based Optical Fibers. , 2016, , .		0
319	Hydroxyl Properties of Hydrogenated Germanosilicate Optical Fiber Due to Thermal Treatment and Ultraviolet Irradiation. Journal of Nano- and Electronic Physics, 2017, 9, 01027-1-01027-4.	0.2	0
320	Statistical analysis of the 800 nm fs-laser inscription conditions on the characteristics and thermal stability of FBGs inscribed in fluorine-doped optical fibers. , 2018, , .		0
321	Hydrogen and deuterium distributed sensing using chirped pulse φOTDR. , 2019, , .		О
322	Corrections to "Irradiation Tests of Optical Fibers and Cables Devoted to Corium Monitoring in Case of a Severe Accident in a Nuclear Power Plantâ€: IEEE Transactions on Nuclear Science, 2020, 67, 1195-1195.	1.2	0
323	Recent Advances in Radiation-Hardened Fiber-Optic Amplifiers for Space-based Laser Communications. , 2021, , .		0
324	Optimization of single-mode optical fibers for strain and temperature discrimination through		0

Brillouin sensing. , 2021, , .

#	Article	IF	CITATIONS
325	Optimization of the Radiation Response of Backup Optical Fiber Amplifiers for Space Missions. IEEE Transactions on Nuclear Science, 2022, 69, 1500-1505.	1.2	0
326	<i>In Situ</i> Optical Characterization of Bulk Optical Glasses Under Protons and X-Rays. IEEE Transactions on Nuclear Science, 2022, 69, 1492-1499.	1.2	0
327	O2 Loaded Germanosilicate Optical Fibers: Experimental In Situ Investigation and Ab Initio Simulation Study of GLPC Evolution under Irradiation. Applied Sciences (Switzerland), 2022, 12, 3916.	1.3	0
328	X-ray irradiation response of antireflection coatings. , 2019, , .		0