Khurram Saleem Joya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5845932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rationally designed FeOx@CuOx/FTO dendritic hybrid: A sustainable electrocatalyst for efficient oxygen evolution reaction. Fuel, 2022, 319, 123797.	6.4	16
2	Surface-assembled Fe-Oxide colloidal nanoparticles for high performance electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2021, 46, 5207-5222.	7.1	14
3	Facile synthesis of novel carbon dots@metal organic framework composite for remarkable and highly sustained oxygen evolution reaction. Journal of Alloys and Compounds, 2021, 856, 158038.	5.5	34
4	Engineered Nanoscale Singleâ€Metalâ€Oxides Catalytic Thin Films for Highâ€Performance Water Oxidation. Energy Technology, 2021, 9, 2000896.	3.8	5
5	Thin-film iron-oxide nanobeads as bifunctional electrocatalyst for high activity overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 7885-7902.	7.1	31
6	Iron doped nickel ditelluride hierarchical nanoflakes arrays directly grown on nickel foam as robust electrodes for oxygen evolution reaction. Electrochimica Acta, 2021, 371, 137830.	5.2	44
7	Copper telluride nanowires for high performance electrocatalytic water oxidation in alkaline media. Journal of Power Sources, 2021, 491, 229628.	7.8	23
8	Engineered Modular Design of a Nanoscale CoNP/Au _{nano} Hybrid Assembly for High-Performance Overall Water Splitting. ACS Applied Energy Materials, 2021, 4, 8953-8968.	5.1	16
9	Designing of noble metal free high performance mesoporous electrocatalysts for water splitting. International Journal of Hydrogen Energy, 2021, 46, 39799-39809.	7.1	7
10	Ultrathin CoTe nanoflakes electrode demonstrating low overpotential for overall water splitting. Fuel, 2020, 280, 118666.	6.4	49
11	Cobalt Colloid-derived Efficient and Durable Nanoscale Electrocatalytic Films for High-Activity Water Oxidation. ACS Omega, 2020, 5, 10651-10662.	3.5	6
12	Spray-Coated Thin-Film Ni-Oxide Nanoflakes as Single Electrocatalysts for Oxygen Evolution and Hydrogen Generation from Water Splitting. ACS Omega, 2020, 5, 10641-10650.	3.5	32
13	Spray-assembled nanoscale cobalt-oxide as highly efficient and durable bifunctional electrocatalyst for overall water splitting. Materials Today Energy, 2020, 17, 100434.	4.7	7
14	Highly Sensitive and Selective Detection of Arsenic Using Electrogenerated Nanotextured Gold Assemblage. ACS Omega, 2019, 4, 13645-13657.	3.5	71
15	Nanoscale LaDySn 2 O 7 /SnSe Composite for Visibleâ€light Driven Photoreduction of CO 2 to Methane and for Monoazo Dyes Photodegradation. ChemistrySelect, 2019, 4, 11511-11517.	1.5	6
16	Nobleâ€Metalâ€Free Colloidalâ€Copper Based Low Overpotential Water Oxidation Electrocatalyst. ChemCatChem, 2019, 11, 6022-6030.	3.7	22
17	Nanoscale palladium as a new benchmark electrocatalyst for water oxidation at low overpotential. Journal of Materials Chemistry A, 2019, 7, 9137-9144.	10.3	65
18	Zinc-telluride nanospheres as an efficient water oxidation electrocatalyst displaying a low overpotential for oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 26410-26420.	10.3	87

KHURRAM SALEEM JOYA

#	Article	IF	CITATIONS
19	Surface-assembled non-noble metal nanoscale Ni-colloidal thin-films as efficient electrocatalysts for water oxidation. RSC Advances, 2019, 9, 37274-37286.	3.6	16
20	Metal Nanoclusters: New Paradigm in Catalysis for Water Splitting, Solar and Chemical Energy Conversion. ChemSusChem, 2019, 12, 1517-1548.	6.8	81
21	Comparative study of catalytic ozonation and Fenton-like processes using iron-loaded rice husk ash as catalyst for the removal of methylene blue in wastewater. Ozone: Science and Engineering, 2019, 41, 250-260.	2.5	22
22	Catalytic ozonation of paracetamol on zeolite A: Non-radical mechanism. Catalysis Communications, 2018, 112, 15-20.	3.3	49
23	Heterogeneous Electrocatalysts for Efficient Water Oxidation Derived from Metal Phthalocyanine. ChemistrySelect, 2018, 3, 11357-11366.	1.5	24
24	Efficient electrochemical water oxidation in neutral and near-neutral systems with a nanoscale silver-oxide catalyst. Nanoscale, 2016, 8, 15033-15040.	5.6	31
25	Electrocatalysts: Surface Generation of a Cobaltâ€Derived Water Oxidation Electrocatalyst Developed in a Neutral HCO ₃ ^{â^'} /CO ₂ System (Adv. Energy Mater. 16/2014). Advanced Energy Materials, 2014, 4, .	19.5	5
26	Water Oxidation Electrocatalysts: Niâ€Based Electrocatalyst for Water Oxidation Developed Inâ€Situ in a HCO ₃ ^{â''} /CO ₂ System at Nearâ€Neutral pH (Adv. Energy Mater. 9/2014). Advanced Energy Materials, 2014, 4, .	19.5	3
27	Artificial Leaf Goes Simpler and More Efficient for Solar Fuel Generation. ChemSusChem, 2014, 7, 73-76.	6.8	35
28	Surface Generation of a Cobaltâ€Derived Water Oxidation Electrocatalyst Developed in a Neutral HCO ₃ ^{â^'} /CO ₂ System. Advanced Energy Materials, 2014, 4, 1400252.	19.5	58
29	Niâ€Based Electrocatalyst for Water Oxidation Developed Inâ€Situ in a HCO ₃ ^{â^'} /CO ₂ System at Nearâ€Neutral pH. Advanced Energy Materials, 2014, 4, 1301929.	19.5	70
30	Waterâ€5plitting Catalysis and Solar Fuel Devices: Artificial Leaves on the Move. Angewandte Chemie - International Edition, 2013, 52, 10426-10437.	13.8	421
31	Electrochemical <i>in situ</i> surface enhanced Raman spectroscopic characterization of a trinuclear ruthenium complex, Ruâ€red. Journal of Raman Spectroscopy, 2013, 44, 1195-1199.	2.5	34
32	Molecular Catalytic Assemblies for Electrodriven Water Splitting. ChemPlusChem, 2013, 78, 35-47.	2.8	47
33	Surfaceâ€Immobilized Singleâ€Site Iridium Complexes for Electrocatalytic Water Splitting. Angewandte Chemie - International Edition, 2012, 51, 9601-9605.	13.8	126
34	Biomimetic molecular water splitting catalysts for hydrogen generation. International Journal of Hydrogen Energy, 2012, 37, 8787-8799.	7.1	33
35	Phase transformation and freestanding nanoparticles formation in lead zirconate titanate derived by sol-gel. Applied Physics Letters, 2007, 91, .	3.3	7
36	Application of peanut shell ash as a low-cost support for Fenton-like catalytic removal of methylene blue in wastewater. , 0, 111, 338-344.		9

3

#	Article	IF	CITATIONS
37	Combined catalytic ozonation and electroflocculation process for the removal of basic yellow 28 in wastewater. , 0, 127, 354-363.		6
38	Application of heterogeneous iron loaded zeolite A catalyst in photo-Fenton process for the removal of safranin in wastewater. , 0, 148, 152-161.		9