Muhammad Sohail

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5845745/publications.pdf

Version: 2024-02-01

516710 477307 1,005 51 16 29 citations g-index h-index papers 53 53 53 769 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Utilization of hydrolysate from saccharified sugarcane bagasse for phosphatases production. Biomass Conversion and Biorefinery, 2024, 14, 5331-5342.	4.6	2
2	Characterization, thermal stabilization and desizing potential of amylase from <i>A. tubingensis</i> SY 1. Journal of the Textile Institute, 2022, 113, 993-1000.	1.9	3
3	NDM Production as a Dominant Feature in Carbapenem-Resistant Enterobacteriaceae Isolates from a Tertiary Care Hospital. Antibiotics, 2022, $11,48$.	3.7	9
4	Alginate Lyases from Marine Bacteria: An Enzyme Ocean for Sustainable Future. Molecules, 2022, 27, 3375.	3.8	26
5	Cellulolytic and Xylanolytic Enzymes from Yeasts: Properties and Industrial Applications. Molecules, 2022, 27, 3783.	3.8	9
6	Supporting role of lignin in immobilization of yeast on sugarcane bagasse for continuous pectinase production. Journal of the Science of Food and Agriculture, 2021, 101, 1709-1714.	3.5	16
7	Biomass to Xylose. Advances in Science, Technology and Innovation, 2021, , 247-265.	0.4	2
8	Sugarcane bagasse: A promising substrate for solid-state fermentation. , 2021, , 1-13.		5
9	Marine Bacterial Esterases: Emerging Biocatalysts for Industrial Applications. Applied Biochemistry and Biotechnology, 2021, 193, 1187-1214.	2.9	32
10	Comparison of composting of chemically pretreated and fermented sugarcane bagasse for zero-waste biorefinery. Journal of Material Cycles and Waste Management, 2021, 23, 911-921.	3.0	19
11	Xylanolytic Bacillus species for xylooligosaccharides production: a critical review. Bioresources and Bioprocessing, 2021, 8, .	4.2	23
12	Marine microbial L-glutaminase: from pharmaceutical to food industry. Applied Microbiology and Biotechnology, 2021, 105, 4453-4466.	3.6	14
13	PCR and microarray analysis of AmpC and ESBLs producing Pseudomonas aeruginosa isolates from intensive care units. Gene Reports, 2021, 23, 101178.	0.8	0
14	Cellulases: From Bioactivity to a Variety of Industrial Applications. Biomimetics, 2021, 6, 44.	3.3	96
15	Production of multienzyme by <i>Bacillus aestuarii</i> UE25 using ionic liquid pretreated sugarcane bagasse. Journal of Basic Microbiology, 2021, 61, 1016-1028.	3.3	12
16	Lignin: A Renewable Chemical Feedstock. , 2021, , 1-15.		4
17	Amylase production and growth pattern of two indigenously isolated Aspergilli under submerged fermentation: influence of physico-chemical parameters. Pakistan Journal of Botany, 2021, 53, .	0.5	1
18	Wild Halophytic Phragmites karka Biomass Saccharification by Bacterial Enzyme Cocktail. Frontiers in Microbiology, 2021, 12, 714940.	3.5	12

#	Article	lF	CITATIONS
19	Use of Ionic Liquid Pretreated and Fermented Sugarcane Bagasse as an Adsorbent for Congo Red Removal. Polymers, 2021, 13, 3943.	4.5	11
20	Statistical optimization of saccharificaion of carbohydrate content of alkali pretreated sugarcane bagasse by enzyme cocktail produced by Bacillus vallismortis MH 1 and Bacillus aestuarii UE25. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100174.	2.6	5
21	A cross sectional study to observe the diversity of fungal species in Onychomycosis isolated from a tertiary care hospital in Karachi JPMA the Journal of the Pakistan Medical Association, 2021, 71, 1-12.	0.2	O
22	Pectinase production from immobilized and free cells of Geotrichum candidum AA15 in galacturonic acid and sugars containing medium. Journal of King Saud University - Science, 2020, 32, 952-954.	3 . 5	15
23	Characterization of pectinase from Geotrichum candidum AA15 and its potential application in orange juice clarification. Journal of King Saud University - Science, 2020, 32, 955-961.	3.5	36
24	Cellulose extraction from methyltrioctylammonium chloride pretreated sugarcane bagasse and its application. International Journal of Biological Macromolecules, 2020, 165, 11-17.	7.5	29
25	Two layered strategy for cost effective production of pectinase: immobilization of yeast and utilization of crude substrate. Heliyon, 2020, 6, e05456.	3.2	3
26	Combined pretreatment of sugarcane bagasse using alkali and ionic liquid to increase hemicellulose content and xylanase production. BMC Biotechnology, 2020, 20, 64.	3.3	19
27	Evaluation of Factors Affecting Saccharification of Sugarcane Bagasse Using Cellulase Preparation from a Thermophilic Strain of Brevibacillus sp Current Microbiology, 2020, 77, 2422-2429.	2.2	14
28	An overview on marine cellulolytic enzymes and their potential applications. Applied Microbiology and Biotechnology, 2020, 104, 6873-6892.	3.6	32
29	Utilization of methyltrioctylammonium chloride as new ionic liquid in pretreatment of sugarcane bagasse for production of cellulase by novel thermophilic bacteria. Journal of Biotechnology, 2020, 317, 34-38.	3.8	23
30	Co-culturing corncob-immobilized yeasts on orange peels for the production of pectinase. Biotechnology Letters, 2020, 42, 1743-1753.	2.2	15
31	lonic Liquids: Green Solvent for Biomass Pretreatment. Nanotechnology in the Life Sciences, 2020, , 27-36.	0.6	8
32	Production of cellulase and xylanase from Candida tropicalis (MK- 118) on purified and crude substrates. Pakistan Journal of Botany, 2020, 52, .	0.5	11
33	Banana Peels: A Promising Substrate for the Coproduction of Pectinase and Xylanase from <i>Aspergillus fumigatus</i> MS16. Polish Journal of Microbiology, 2020, 69, 19-26.	1.7	39
34	<i>Luffa cylindrica</i> Immobilized with <i>Aspergillus terreus</i> QMS-1: an Efficient and Cost-Effective Strategy for the Removal of Congo Red using Stirred Tank Reactor. Polish Journal of Microbiology, 2020, 69, 193-203.	1.7	12
35	Glucoamylase from a thermophilic strain of Bacillus licheniformis RT-17: production and characterization. Pakistan Journal of Botany, 2020, 52, .	0.5	1
36	Production of lipases from Zygosaccharomyces MRAKII TS16. Pakistan Journal of Botany, 2020, 52, .	0.5	1

3

#	Article	IF	CITATIONS
37	Characterization of cellulases from thermophilic bacilli and their application for the saccharification of sugarcane bagasse. Pakistan Journal of Botany, 2020, 52, .	0.5	5
38	Application of Candida tropicalis MK-160 for the production of xylanase and ethanol. Journal of King Saud University - Science, 2019, 31, 1189-1194.	3.5	27
39	Methyltrioctylammonium chloride mediated removal of lignin from sugarcane bagasse for themostable cellulase production. International Journal of Biological Macromolecules, 2019, 140, 1064-1072.	7.5	36
40	Citrus limetta peels: a promising substrate for the production of multienzyme preparation from a yeast consortium. Bioresources and Bioprocessing, 2019, 6 , .	4.2	16
41	Optimization of pectinase production from Geotrichum candidum AA15 using response surface methodology. Pakistan Journal of Botany, 2019, 51, .	0.5	7
42	Statistical optimization of immobilization of yeast cells on corncob for pectinase production. Biocatalysis and Agricultural Biotechnology, 2018, 14, 450-456.	3.1	39
43	Detection of carbapenemases, AmpC and ESBL genes in Acinetobacter isolates from ICUs by DNA microarray. Journal of Microbiological Methods, 2018, 155, 19-23.	1.6	15
44	Evaluation of a yeast co-culture for cellulase and xylanase production under solid state fermentation of sugarcane bagasse using multivariate approach. Industrial Crops and Products, 2018, 123, 407-415.	5.2	46
45	Bacteremia in a human caused by an XDR strain of Pseudomonas fulva. Journal of Infection in Developing Countries, 2018, 12, 597-599.	1.2	7
46	Carbapenemases among Acinetobacter species isolated from NICU of a tertairy care hospital in Karachi. JPMA the Journal of the Pakistan Medical Association, 2017, 67, 1547-1551.	0.2	2
47	Production of cellulase from Aspergillus terreus MS105 on crude and commercially purified substrates. 3 Biotech, 2016, 6, 103.	2.2	34
48	Biophysicochemical characterization of Pyocin SA189 produced by Pseudomonas aeruginosa SA189. Brazilian Journal of Microbiology, 2015, 46, 1147-1154.	2.0	11
49	Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels. Brazilian Journal of Microbiology, 2014, 45, 1485-1492.	2.0	40
50	Mutagenesis of Aspergillus niger MS82 for cellulase production. Clinical Biochemistry, 2011, 44, S239-S240.	1.9	0
51	Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnology, 2009, 25, 437-441.	4.4	161