Takayuki Kishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5845363/publications.pdf

Version: 2024-02-01

566801 610482 30 619 15 24 citations h-index g-index papers 34 34 34 922 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Anti-nuclear matrix protein 2 antibody-positive inflammatory myopathies represent extensive myositis without dermatomyositis-specific rash. Rheumatology, 2022, 61, 1222-1227.	0.9	32
2	Trends in actual medication use for child-onset systemic lupus erythematosus using the Japanese health insurance database 2009–18. Modern Rheumatology, 2022, 32, 565-570.	0.9	1
3	Reliability of antinuclear matrix protein 2 antibody assays in idiopathic inflammatory myopathies is dependent on target protein properties. Journal of Dermatology, 2022, 49, 441-447.	0.6	3
4	Anti-MDA5 autoantibodies associated with juvenile dermatomyositis constitute a distinct phenotype in North America. Rheumatology, 2021, 60, 1839-1849.	0.9	25
5	Corticosteroid discontinuation, complete clinical response and remission in juvenile dermatomyositis. Rheumatology, 2021, 60, 2134-2145.	0.9	9
6	External validation of the EULAR/ACR idiopathic inflammatory myopathies classification criteria withÂa Japanese paediatric cohort. Rheumatology, 2021, 60, 802-808.	0.9	0
7	Anti-SAE autoantibody-positive Japanese patient with juvenile dermatomyositis complicated with interstitial lung disease - a case report. Pediatric Rheumatology, 2021, 19, 34.	0.9	9
8	Clinical impact of myositis-specific autoantibodies on long-term prognosis of juvenile idiopathic inflammatory myopathies: multicentre study. Rheumatology, 2021, 60, 4821-4831.	0.9	12
9	Updated version of Japanese Childhood Health Assessment Questionnaire (CHAQ). Modern Rheumatology, 2020, 30, 905-909.	0.9	4
10	Endothelial Activation Markers as Disease Activity and Damage Measures in Juvenile Dermatomyositis. Journal of Rheumatology, 2020, 47, 1011-1018.	1.0	17
11	The evaluation of gene polymorphisms associated with autoinflammatory syndrome in patients with palindromic rheumatism complicated by intermittent hydrarthrosis. Clinical Rheumatology, 2020, 39, 841-845.	1.0	3
12	Anti-Ro52 autoantibodies are associated with interstitial lung disease and more severe disease in patients with juvenile myositis. Annals of the Rheumatic Diseases, 2019, 78, 988-995.	0.5	99
13	AB1025â€HARMONIZING JAPANESE VERSION OF THE CHILDHOOD HEALTH ASSESSMENT QUESTIONNAIRE (CHAQ) WITH CHAQ. , 2019, , .		O
14	Anti-NT5C1A autoantibodies are associated with more severe disease in patients with juvenile myositis. Annals of the Rheumatic Diseases, 2018, 77, 714-719.	0.5	31
15	Medications received by patients with juvenile dermatomyositis. Seminars in Arthritis and Rheumatism, 2018, 48, 513-522.	1.6	16
16	Infliximab for the Treatment of Refractory Kawasaki Disease: A Nationwide Survey in Japan. Journal of Pediatrics, 2018, 195, 115-120.e3.	0.9	32
17	Features distinguishing clinically amyopathic juvenile dermatomyositis from juvenile dermatomyositis. Rheumatology, 2018, 57, 1956-1963.	0.9	24
18	Association of Anti–3â€Hydroxyâ€3â€Methylglutarylâ€Coenzyme A Reductase Autoantibodies With DRB1*07: and Severe Myositis in Juvenile Myositis Patients. Arthritis Care and Research, 2017, 69, 1088-1094.	01.5	71

#	Article	IF	Citations
19	Systemic lupus erythematosus associated with RASopathy. Modern Rheumatology Case Reports, 2017, 1, 94-98.	0.3	7
20	A nationwide survey of pediatric acquired demyelinating syndromes in Japan. Neurology, 2016, 87, 2006-2015.	1.5	56
21	Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity. Oncotarget, 2016, 7, 72113-72130.	0.8	24
22	Painless lumps in the proximal interphalangeal joints in trichoâ€rhinoâ€phalangeal syndrome type 1. Pediatrics International, 2015, 57, 507-508.	0.2	0
23	Childhoodâ€Onset Antiâ€Ku Antibodyâ€Positive Generalized Morphea with Polymyositis: A Japanese Case Study. Pediatric Dermatology, 2015, 32, e224-5.	0.5	4
24	Long-term outcome of 114 adult JIA patients in a non-pediatric rheumatology institute in Japan. Modern Rheumatology, 2015, 25, 62-66.	0.9	3
25	Clinical analysis of 50 children with juvenile dermatomyositis. Modern Rheumatology, 2013, 23, 311-317.	0.9	23
26	Clinical analysis of 50 children with juvenile dermatomyositis. Modern Rheumatology, 2013, 23, 311-317.	0.9	11
27	De novo 19q13.42 duplications involving NLRP gene cluster in a patient with systemic-onset juvenile idiopathic arthritis. Journal of Human Genetics, 2011, 56, 343-347.	1.1	21
28	Exonic deletion of CASP10 in a patient presenting with systemic juvenile idiopathic arthritis, but not with autoimmune lymphoproliferative syndrome type IIa. International Journal of Immunogenetics, 2011, 38, 287-293.	0.8	8
29	Effect of anakinra on arthropathy in CINCA/NOMID syndrome. Pediatric Rheumatology, 2010, 8, 9.	0.9	25
30	Extremely low-dose ACTH step-up protocol for West syndrome: Maximum therapeutic effect with minimal side effects. Brain and Development, 2006, 28, 8-13.	0.6	27