To Ngai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5845136/publications.pdf

Version: 2024-02-01

177	6,927	45	72
papers	citations	h-index	g-index
185	185	185	6582
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fortification of edible films with bioactive agents: a review of their formation, properties, and application in food preservation. Critical Reviews in Food Science and Nutrition, 2022, 62, 5029-5055.	10.3	73
2	Pickering emulsions stabilized by biocompatible particles: A review of preparation, bioapplication, and perspective. Particuology, 2022, 64, 110-120.	3.6	19
3	All-natural oil-in-water high internal phase Pickering emulsions featuring interfacial bilayer stabilization. Journal of Colloid and Interface Science, 2022, 607, 1491-1499.	9.4	27
4	Development of pH-responsive emulsions stabilized by whey protein fibrils. Food Hydrocolloids, 2022, 122, 107067.	10.7	48
5	Pickering emulsions stabilized by aminated gelatin nanoparticles: Are gelatin nanoparticles acting as genuine Pickering stabilizers or structuring agents?. Food Hydrocolloids, 2022, 123, 107151.	10.7	24
6	Polymer coatings on magnesiumâ€based implants for orthopedic applications. Journal of Polymer Science, 2022, 60, 32-51.	3.8	34
7	Tailoring the properties of double-crosslinked emulsion gels using structural design principles: Physical characteristics, stability, and delivery of lycopene. Biomaterials, 2022, 280, 121265.	11.4	52
8	pH-Responsive Pickering high internal phase emulsions stabilized by Waterborne polyurethane. Journal of Colloid and Interface Science, 2022, 610, 994-1004.	9.4	30
9	Robust and highly adaptable high internal phase gel emulsions stabilized solely by a natural saponin hydrogelator glycyrrhizic acid. Food and Function, 2022, 13, 280-289.	4.6	11
10	pH-dependent micellar properties of edible biosurfactant steviol glycosides and their oil-water interfacial interactions with soy proteins. Food Hydrocolloids, 2022, 126, 107476.	10.7	7
11	CO ₂ -responsive Pickering emulsions stabilized by soft protein particles for interfacial biocatalysis. Chemical Science, 2022, 13, 2884-2890.	7.4	19
12	Investigation of the Contact Angle and Packing Density of Silica Nanoparticles at a Pickering Emulsion Interface Fixed by UV Polymerization. Langmuir, 2022, 38, 4234-4242.	3.5	7
13	Chitosan-coated phytoglycogen for preparation of biocompatible Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128861.	4.7	3
14	Recent Advances in Chemically Modified Cellulose and Its Derivatives for Food Packaging Applications: A Review. Polymers, 2022, 14, 1533.	4.5	29
15	Non-covalent reconfigurable microgel colloidosomes with a well-defined bilayer shell. Chemical Science, 2022, 13, 6205-6216.	7.4	10
16	Nanocomposite Polymer Colloids Prepared via Emulsion Polymerization and Stabilized Using Polydopamine-Coated Silica Particles. Langmuir, 2022, 38, 5454-5463.	3.5	3
17	Water-in-oil high internal phase Pickering emulsions formed by spontaneous interfacial hydrolysis of monomer oil. Journal of Colloid and Interface Science, 2022, 623, 476-486.	9.4	4
18	Advances in Pickering emulsions stabilized by protein particles: Toward particle fabrication, interaction and arrangement. Food Research International, 2022, 157, 111380.	6.2	47

#	Article	IF	CITATIONS
19	Multifunctional Silica-Modified Hybrid Microgels Templated from Inverse Pickering Emulsions. Langmuir, 2022, 38, 6571-6578.	3.5	2
20	Edible high internal phase Pickering emulsion with double-emulsion morphology. Food Hydrocolloids, 2021, 111, 106405.	10.7	53
21	Engineering proteinaceous colloidosomes as enzyme carriers for efficient and recyclable Pickering interfacial biocatalysis. Chemical Science, 2021, 12, 12463-12467.	7.4	20
22	Growth of Au nanoparticles on phosphorylated zein protein particles for use as biomimetic catalysts for cascade reactions at the oil–water interface. Chemical Science, 2021, 12, 3885-3889.	7.4	31
23	A green and facile strategy for the fabrication of all-natural porous proteinaceous microspheres. Materials Chemistry Frontiers, 2021, 5, 3897-3902.	5.9	7
24	pH-Sensitive W/O Pickering High Internal Phase Emulsions and W/O/W High Internal Water-Phase Double Emulsions with Tailored Microstructures Costabilized by Lecithin and Silica Inorganic Particles. Langmuir, 2021, 37, 2843-2854.	3.5	29
25	Sonochemical effects on formation and emulsifying properties of zein-gum Arabic complexes. Food Hydrocolloids, 2021, 114, 106557.	10.7	28
26	Photo-Responsive Fluorosurfactant Enabled by Plasmonic Nanoparticles for Light-Driven Droplet Manipulation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 21914-21923.	8.0	9
27	Pickering Emulsions Simultaneously Stabilized by Starch Nanocrystals and Zein Nanoparticles: Fabrication, Characterization, and Application. Langmuir, 2021, 37, 8577-8584.	3.5	22
28	Adaptive Morphology of Surfaceâ€Segregated Micelles Synthesized from Polymerizationâ€Induced Selfâ€Assembly Coâ€Mediated by a Binary Mixture of Macroâ€RAFT Agents. Macromolecular Chemistry and Physics, 2021, 222, 2100128.	2.2	3
29	Microrheology of thermoresponsive poly(N-isopropylacrylamide) microgel dispersions near a substrate surface. Journal of Colloid and Interface Science, 2021, 597, 104-113.	9.4	4
30	A facile and effective approach for the synthesis of fluorinated waterborne polyurethanes with good hydrophobicity and antifouling properties. Progress in Organic Coatings, 2021, 159, 106405.	3.9	13
31	Polysaccharide-based Pickering emulsions: Formation, stabilization and applications. Food Hydrocolloids, 2021, 119, 106812.	10.7	119
32	One-Step Formation of Double Emulsions Stabilized by PNIPAM-based Microgels: The Role of Co-monomer. Langmuir, 2021, 37, 1045-1053.	3.5	21
33	A facile evanescent-field imaging approach for monitoring colloidal gel evolution near a surface. Soft Matter, 2021, 17, 4006-4010.	2.7	4
34	Bioinspired Eggosomes with Dual Stimuli-Responsiveness. ACS Applied Bio Materials, 2021, 4, 7825-7835.	4.6	3
35	Engineering hybrid microgels as particulate emulsifiers for reversible Pickering emulsions. Chemical Science, 2021, 13, 39-43.	7.4	22
36	Measurements of interactions between fluorescent molecules and polyethylene glycol self-assembled monolayers. Soft Matter, 2021, 18, 236-243.	2.7	3

#	Article	IF	CITATIONS
37	Oneâ€Step Preparation of Allâ€Natural Pickering Double Emulsions Stabilized by Oppositely Charged Biopolymer Particles. Advanced Materials Interfaces, 2021, 8, 2101568.	3.7	7
38	Oneâ€Step Preparation of Allâ€Natural Pickering Double Emulsions Stabilized by Oppositely Charged Biopolymer Particles (Adv. Mater. Interfaces 23/2021). Advanced Materials Interfaces, 2021, 8, .	3.7	0
39	Inverse Pickering Emulsion Stabilized by Binary Particles with Contrasting Characteristics and Functionality for Interfacial Biocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 4989-4997.	8.0	79
40	Anomalous Long-Range Attraction in Colloidal Binary Mixtures at Fluid–Fluid Interfaces. Colloids and Interfaces, 2020, 4, 36.	2.1	0
41	Ultra-stable Pickering emulsion stabilized by a natural particle bilayer. Chemical Communications, 2020, 56, 14011-14014.	4.1	36
42	A Smart Route for Encapsulating Pd Nanoparticles into a ZIF-8 Hollow Microsphere and Their Superior Catalytic Properties. Langmuir, 2020, 36, 2037-2043.	3.5	30
43	Green preparation of hydrogel particlesâ€inâ€emulsions for simultaneous enhancement of humoral and cellâ€mediated immunity. Engineering in Life Sciences, 2020, 20, 514-524.	3.6	3
44	Pickering High Internal Phase Emulsions Templated Super-Hydrophobic–Oleophilic Elastic Foams for Highly Efficient Oil/Water Separation. ACS Applied Polymer Materials, 2020, 2, 5664-5673.	4.4	22
45	Pickering emulsions: Versatility of colloidal particles and recent applications. Current Opinion in Colloid and Interface Science, 2020, 49, 1-15.	7.4	250
46	Naphthalimideâ€Based Aggregationâ€Induced Emissive Polymeric Hydrogels for Fluorescent Pattern Switch and Biomimetic Actuators. Macromolecular Rapid Communications, 2020, 41, e2000123.	3.9	37
47	Investigation of the stability in Pickering emulsions preparation with commercial cosmetic ingredients. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125082.	4.7	33
48	Sodium caseinate as a particulate emulsifier for making indefinitely recycled pH-responsive emulsions. Chemical Science, 2020, 11, 3797-3803.	7.4	41
49	Ultra-stable aqueous foams induced by interfacial co-assembly of highly hydrophobic particles and hydrophilic polymer. Journal of Colloid and Interface Science, 2020, 579, 628-636.	9.4	31
50	Facile Preparation of a Fluorineâ€Free, Robust, Superhydrophobic Coating through Dip Coating Combined with Nonâ€Solvent Induced Phase Separation (Dipâ€Coatingâ€NIPS) Method. Macromolecular Chemistry and Physics, 2020, 221, 2000023.	2.2	13
51	Poly(<scp> </scp> -lactic acid) (PLLA)/MgSO ₄ ·7H ₂ O Composite Coating on Magnesium Substrates for Corrosion Protection and Cytocompatibility Promotion. ACS Applied Bio Materials, 2020, 3, 1364-1373.	4.6	14
52	Hybrid fracture fixation systems developed for orthopaedic applications: A general review. Journal of Orthopaedic Translation, 2019, 16, 1-13.	3.9	72
53	Protein-Based Pickering High Internal Phase Emulsions as Nutraceutical Vehicles of and the Template for Advanced Materials: A Perspective Paper. Journal of Agricultural and Food Chemistry, 2019, 67, 9719-9726.	5.2	74
54	Poly(<scp>l</scp> -lactic acid) (PLLA) Coatings with Controllable Hierarchical Porous Structures on Magnesium Substrate: An Evaluation of Corrosion Behavior and Cytocompatibility. ACS Applied Bio Materials, 2019, 2, 3843-3853.	4.6	17

#	Article	lF	CITATIONS
55	Development of a novel biodegradable and anti-bacterial polyurethane coating for biomedical magnesium rods. Materials Science and Engineering C, 2019, 99, 344-356.	7.3	52
56	Measurements of Particle–Surface Interactions in Both Equilibrium and Nonequilibrium Systems. Langmuir, 2019, 35, 8910-8920.	3.5	4
57	Synthesis of structured hollow microspheres with sandwich-like hybrid shell of RGO/Pd/m-SiO2 for highly efficient catalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 129-137.	4.7	5
58	Hydrophobized nanocomposite hydrogel microspheres as particulate stabilizers for water-in-oil emulsions. Chemical Communications, 2019, 55, 5990-5993.	4.1	34
59	Correlating the effect of co-monomer content with responsiveness and interfacial activity of soft particles with stability of corresponding smart emulsions. Journal of Colloid and Interface Science, 2019, 546, 293-302.	9.4	14
60	Microgel Particles at Interfaces: Phenomena, Principles, and Opportunities in Food Sciences. Langmuir, 2019, 35, 4205-4217.	3.5	52
61	Probing Sol–Gel Matrices and Dynamics of Star PEG Hydrogels Near Overlap Concentration. Macromolecules, 2019, 52, 8956-8966.	4.8	24
62	Controlled synthesis of metal-organic frameworks coated with noble metal nanoparticles and conducting polymer for enhanced catalysis. Journal of Colloid and Interface Science, 2019, 537, 262-268.	9.4	30
63	Emulsions stabilized by pH-responsive PNIPAM-based microgels: Effect of spatial distribution of functional carboxylic groups on the emulsion stability. Journal of the Taiwan Institute of Chemical Engineers, 2018, 92, 97-105.	5.3	18
64	Hierarchical Porous Protein Scaffold Templated from High Internal Phase Emulsion Costabilized by Gelatin and Gelatin Nanoparticles. Langmuir, 2018, 34, 4820-4829.	3.5	70
65	Near-surface microrheology reveals dynamics and viscoelasticity of soft matter. Soft Matter, 2018, 14, 9764-9776.	2.7	10
66	Diffusion and Binding of Laponite Clay Nanoparticles into Collagen Fibers for the Formation of Leather Matrix. Langmuir, 2018, 34, 7379-7385.	3.5	30
67	Submicron Inverse Pickering Emulsions for Highly Efficient and Recyclable Enzymatic Catalysis. Chemistry - an Asian Journal, 2018, 13, 3533-3539.	3.3	30
68	Measuring the Interactions between Protein-Coated Microspheres and Polymer Brushes in Aqueous Solutions. Langmuir, 2018, 34, 8798-8806.	3.5	9
69	Allâ€Silica Submicrometer Colloidosomes for Cargo Protection and Tunable Release. Angewandte Chemie - International Edition, 2018, 57, 11662-11666.	13.8	47
70	An innovative $\mathrm{Mg/Ti}$ hybrid fixation system developed for fracture fixation and healing enhancement at load-bearing skeletal site. Biomaterials, 2018, 180, 173-183.	11.4	55
71	Allâ€Silica Submicrometer Colloidosomes for Cargo Protection and Tunable Release. Angewandte Chemie, 2018, 130, 11836-11840.	2.0	7
72	Comparing the Relative Interfacial Affinity of Soft Colloids With Different Crosslinking Densities in Pickering Emulsions. Frontiers in Chemistry, 2018, 6, 148.	3.6	18

#	Article	IF	CITATIONS
73	Hybrid nanodiamond quantum sensors enabled by volume phase transitions of hydrogels. Nature Communications, 2018, 9, 3188.	12.8	54
74	Biodegradable Poly(l-lactic acid) (PLLA) Coatings Fabricated from Nonsolvent Induced Phase Separation for Improving Corrosion Resistance of Magnesium Rods in Biological Fluids. Langmuir, 2018, 34, 10684-10693.	3.5	17
75	Gelatin Particle-Stabilized High-Internal Phase Emulsions for Use in Oral Delivery Systems: Protection Effect and in Vitro Digestion Study. Journal of Agricultural and Food Chemistry, 2017, 65, 900-907.	5.2	117
76	Shear-Assisted Fabrication of Block Copolymer Agglomerates with Various Morphologies in Viscous Medium. Langmuir, 2017, 33, 2829-2836.	3.5	6
77	Interconnected macroporous 3D scaffolds templated from gelatin nanoparticle-stabilized high internal phase emulsions for biomedical applications. Soft Matter, 2017, 13, 3871-3878.	2.7	38
78	Dynamic Supramolecular Hydrogels: Regulating Hydrogel Properties through Self-Complementary Quadruple Hydrogen Bonds and Thermo-Switch. ACS Macro Letters, 2017, 6, 641-646.	4.8	90
79	Highly flexible polymer-carbon dot-ferric ion nanocomposite hydrogels displaying super stretchability, ultrahigh toughness, good self-recovery and shape memory performance. European Polymer Journal, 2017, 95, 482-490.	5.4	20
80	Removing the effect of blooming from potential energy measurement by employing total internal reflection microscopy integrated with video microscopy. Journal of Colloid and Interface Science, 2017, 503, 142-149.	9.4	3
81	Long-range interactions between protein-coated particles and POEGMA brush layers in a serum environment. Colloids and Surfaces B: Biointerfaces, 2017, 150, 279-287.	5.0	7
82	A Highly Sensitive Glucose Biosensor Based on Gold Nanoparticles/Bovine Serum Albumin/Fe3O4 Biocomposite Nanoparticles. Electrochimica Acta, 2016, 222, 1709-1715.	5.2	40
83	Influence of an Additive-Free Particle Spreading Method on Interactions between Charged Colloidal Particles at an Oil/Water Interface. Langmuir, 2016, 32, 4909-4916.	3.5	6
84	Influence of Charged Groups on the Structure of Microgel and Volume Phase Transition by Dielectric Analysis. Macromolecules, 2016, 49, 7997-8008.	4.8	30
85	Mussel-inspired multifunctional supramolecular hydrogels with self-healing, shape memory and adhesive properties. Polymer Chemistry, 2016, 7, 5343-5346.	3.9	86
86	An Injectable Hydrogel with Excellent Selfâ€Healing Property Based on Quadruple Hydrogen Bonding. Macromolecular Chemistry and Physics, 2016, 217, 2172-2181.	2.2	48
87	Measuring the Surface–Surface Interactions Induced by Serum Proteins in a Physiological Environment. Langmuir, 2016, 32, 12129-12136.	3.5	9
88	Tunable Pickering Emulsions with Environmentally Responsive Hairy Silica Nanoparticles. ACS Applied Materials & Discrete Responsive Hairy Silica Nanoparticles. ACS Applied Materials & Discrete Responsive Hairy Silica Nanoparticles. ACS Applied Materials & Discrete Responsive Hairy Silica Nanoparticles. ACS Applied Materials & Discrete Responsive Hairy Silica Nanoparticles. ACS Applied Materials & Discrete Responsive Hairy Silica Nanoparticles. ACS Applied Materials & Discrete Responsive Hairy Silica Nanoparticles. ACS Applied Materials & Discrete Responsive Hairy Silica Nanoparticles. ACS Applied Materials & Discrete Responsive Hairy Silica Nanoparticles. ACS Applied Materials & Discrete Responsive Hairy Silica Nanoparticles. ACS Applied Materials & Discrete Responsive Hairy Silica Nanoparticles. ACS Applied Materials & Discrete Responsive Hairy Silica Nanoparticles. ACS Applied Materials & Discrete Responsive Hairy Silica Nanoparticles. ACS Applied Materials & Discrete Responsive Hairy Silica Nanoparticles. ACS Applied Nanoparticles Responsive Hairy Silica Nanoparticles Responsi	8.0	52
89	Facile synthesis of gold nanoparticle-coated polystyrene composite particles templated from Pickering emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 116-124.	4.7	13
90	Dopamine Polymerization in Liquid Marbles: A General Route to Janus Particle Synthesis. Langmuir, 2016, 32, 3122-3129.	3.5	32

#	Article	IF	Citations
91	A confocal microscopy study of micron-sized poly(N -isopropylacrylamide) microgel particles at the oilâ \in "water interface and anisotopic flattening of highly swollen microgel. Journal of Colloid and Interface Science, 2016, 461, 409-418.	9.4	54
92	Tailor-made microgel particles: Synthesis and characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 122-127.	4.7	25
93	Insertion and confinement of air bubbles inside a liquid marble. Soft Matter, 2016, 12, 542-545.	2.7	8
94	Silicaâ∈Based Liquid Marbles as Microreactors for the Silver Mirror Reaction. Angewandte Chemie - International Edition, 2015, 54, 7012-7017.	13.8	67
95	Measurements of Long-Range Interactions between Protein-Functionalized Surfaces by Total Internal Reflection Microscopy. Langmuir, 2015, 31, 3101-3107.	3 . 5	10
96	Fundamental Study of Emulsions Stabilized by Soft and Rigid Particles. Langmuir, 2015, 31, 6282-6288.	3.5	56
97	Investigation of cell behaviors on thermo-responsive PNIPAM microgel films. Colloids and Surfaces B: Biointerfaces, 2015, 132, 202-207.	5.0	26
98	Gelatin Effects on the Physicochemical and Hemocompatible Properties of Gelatin/PAAm/Laponite Nanocomposite Hydrogels. ACS Applied Materials & Samp; Interfaces, 2015, 7, 18732-18741.	8.0	109
99	Silicaâ€Based Liquid Marbles as Microreactors for the Silver Mirror Reaction. Angewandte Chemie, 2015, 127, 7118-7123.	2.0	25
100	Depletion versus stabilization induced by polymers and nanoparticles: The state of the art. Current Opinion in Colloid and Interface Science, 2015, 20, 54-59.	7.4	31
101	CHAPTER 5. Emulsions Stabilized by Soft Microgel Particles. RSC Soft Matter, 2014, , 93-128.	0.4	1
102	Dielectric investigations on how Mg salt is dispersed in and released from polylactic acid. Chinese Journal of Polymer Science (English Edition), 2014, 32, 497-508.	3.8	2
103	Investigation of the factors affecting the carbohydrate–lectin interaction by ITC and QCM-D. Colloid and Polymer Science, 2014, 292, 391-398.	2.1	10
104	Influence of asymmetric ratio of amphiphilic diblock copolymers on one-step formation and stability of multiple emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 454, 16-22.	4.7	22
105	Tuning the Particle–Surface Interactions in Aqueous Solutions by Soft Microgel Particles. Langmuir, 2014, 30, 13182-13190.	3.5	8
106	Systematic studies of Pickering emulsions stabilized by uniform-sized PLGA particles: preparation and stabilization mechanism. Journal of Materials Chemistry B, 2014, 2, 7605-7611.	5.8	80
107	Gelatin Particle-Stabilized High Internal Phase Emulsions as Nutraceutical Containers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13977-13984.	8.0	227
108	Poly(N-isopropylacrylamide) microgels at the oil–water interface: temperature effect. Soft Matter, 2014, 10, 6182-6191.	2.7	56

#	Article	IF	Citations
109	Direct measurements of particle–surface interactions in aqueous solutions with total internal reflection microscopy. Chemical Communications, 2014, 50, 6556-6570.	4.1	33
110	Dielectric relaxations of poly(N-isopropylacrylamide) microgels near the volume phase transition temperature: impact of cross-linking density distribution on the volume phase transition. Soft Matter, 2014, 10, 8711-8723.	2.7	62
111	Liquid Marbles Stabilized by Charged Polymer Latexes: How Does the Drying of the Latex Particles Affect the Properties of Liquid Marbles?. Langmuir, 2014, 30, 12503-12508.	3.5	8
112	Preparation of uniform-sized colloidosomes based on chitosan-coated alginate particles and its application for oral insulin delivery. Journal of Materials Chemistry B, 2014, 2, 7403-7409.	5.8	36
113	Porous TiO ₂ Materials through Pickering High-Internal Phase Emulsion Templating. Langmuir, 2014, 30, 2676-2683.	3.5	67
114	Nitrogen-Rich and Fire-Resistant Carbon Aerogels for the Removal of Oil Contaminants from Water. ACS Applied Materials & Carbon Aerogels for the Removal of Oil Contaminants from Water.	8.0	178
115	Preparation of Uniform Particle-Stabilized Emulsions Using SPG Membrane Emulsification. Langmuir, 2014, 30, 7052-7056.	3.5	29
116	Uniform chitosan-coated alginate particles as emulsifiers for preparation of stable Pickering emulsions with stimulus dependence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 456, 246-252.	4.7	94
117	Charging and discharging of single colloidal particles at oil/water interfaces. Scientific Reports, 2014, 4, 4778.	3.3	20
118	Controlling the Synthesis and Characterization of Micrometer-Sized PNIPAM Microgels with Tailored Morphologies. Langmuir, 2013, 29, 9581-9591.	3.5	59
119	Polyurethane-based nanoparticles as stabilizers for oil-in-water or water-in-oil Pickering emulsions. Journal of Materials Chemistry A, 2013, 1, 5353.	10.3	46
120	Poly(N-isopropylacrylamide) microgels at the oil–water interface: adsorption kinetics. Soft Matter, 2013, 9, 9939.	2.7	92
121	Hierarchical porous polymeric microspheres as efficient adsorbents and catalyst scaffolds. Chemical Communications, 2013, 49, 8761.	4.1	60
122	Investigating interactions between cationic particles and polyelectrolyte brushes with Total Internal Reflection Microscopy (TIRM). Polymer Chemistry, 2013, 4, 4356.	3.9	12
123	Microgel particles at the fluid–fluid interfaces. Nanoscale, 2013, 5, 1399.	5.6	92
124	Pure Protein Scaffolds from Pickering High Internal Phase Emulsion Template. Macromolecular Rapid Communications, 2013, 34, 169-174.	3.9	114
125	Novel phthalocyanine and PEG-methacrylates based temperature-responsive polymers for targeted photodynamic therapy. Polymer Chemistry, 2013, 4, 782-788.	3.9	33
126	An active one-particle microrheometer: Incorporating magnetic tweezers to total internal reflection microscopy. Review of Scientific Instruments, 2013, 84, 033702.	1.3	7

#	Article	IF	Citations
127	Fabrication of Tunable Janus Microspheres with Dual Anisotropy of Porosity and Magnetism. Langmuir, 2013, 29, 5138-5144.	3.5	36
128	Interactions between Solid Surfaces with Preadsorbed Poly(ethylenimine) (PEI) Layers: Effect of Unadsorbed Free PEI Chains. Langmuir, 2013, 29, 5974-5981.	3.5	20
129	Interactions between Solid Surfaces Mediated by Polyethylene Oxide Polymers: Effect of Polymer Concentration. Langmuir, 2013, 29, 11038-11045.	3.5	14
130	Microgel particles: The structureâ€property relationships and their biomedical applications. Journal of Polymer Science Part A, 2013, 51, 2995-3003.	2.3	47
131	A portable, stable and precise laser differential refractometer. Review of Scientific Instruments, 2013, 84, 114103.	1.3	5
132	Stabilization of Colloidal Suspensions: Competing Effects of Nanoparticle Halos and Depletion Mechanism. Langmuir, 2012, 28, 16022-16028.	3.5	24
133	Correlation between Dielectric/Electric Properties and Cross-Linking/Charge Density Distributions of Thermally Sensitive Spherical PNIPAM Microgels. Macromolecules, 2012, 45, 6158-6167.	4.8	36
134	Hollow magnetic Janus microspheres templated from double Pickering emulsions. RSC Advances, 2012, 2, 5510.	3.6	30
135	One-Step Formation of W/O/W Multiple Emulsions Stabilized by Single Amphiphilic Block Copolymers. Langmuir, 2012, 28, 2332-2336.	3.5	101
136	One-pot synthesis of monodisperse latex particles with single-cavity structure. RSC Advances, 2012, 2, 1322.	3.6	15
137	Ion-induced hydrophobic collapse of surface-confined polyelectrolyte brushes measured by total internal reflection microscopy. Polymer Chemistry, 2012, 3, 2121.	3.9	18
138	Preparation of Responsive Micrometerâ€Sized Microgel Particles with a Highly Functionalized Shell. Macromolecular Rapid Communications, 2012, 33, 419-425.	3.9	23
139	Internal motions of linear chains and spherical microgels in dilute solution. Soft Matter, 2011, 7, 4111.	2.7	12
140	Controlled production of polymer microspheres from microgel-stabilized high internal phase emulsions. Chemical Communications, 2011, 47, 331-333.	4.1	35
141	Plasmonic Goldâ^'Superparamagnetic Hematite Heterostructures. Langmuir, 2011, 27, 5071-5075.	3.5	38
142	Stimuli-responsive gel emulsions stabilized by microgel particles. Colloid and Polymer Science, 2011, 289, 489-496.	2.1	46
143	Direct measurement of weak depletion force between two surfaces. Chinese Journal of Polymer Science (English Edition), 2011, 29, 1-11.	3.8	10
144	Colloidosomes formation by controlling the solvent extraction from particle-stabilized emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 592-596.	4.7	11

#	Article	IF	Citations
145	Macroporous Polymer from Coreâ^'Shell Particle-Stabilized Pickering Emulsions. Langmuir, 2010, 26, 5088-5092.	3.5	43
146	Surface interaction forces mediated by poly(N-isopropylacrylamide) (PNIPAM) polymers: effects of concentration and temperature. Colloid and Polymer Science, 2010, 288, 1167-1172.	2.1	27
147	Inversion of Particleâ€Stabilized Emulsions to Form Highâ€Internalâ€Phase Emulsions. Angewandte Chemie - International Edition, 2010, 49, 2163-2166.	13.8	129
148	Dynamic and structural scalings of the complexation betweenpDNA and bPEI in semidilute and low-salt solutions. Biopolymers, 2010, 93, NA-NA.	2.4	6
149	The slow relaxation mode: from solutions to gel networks. Polymer Journal, 2010, 42, 609-625.	2.7	90
150	Hydrogen-Bonding-Induced Complexation of Polydimethylsiloxane- <i>graft</i> poly(ethylene oxide) and Poly(acrylic acid)- <i>block</i> polyacrylonitrile Micelles in Water. Langmuir, 2010, 26, 14502-14508.	3.5	6
151	Effects of Anions on the Aggregation of Charged Microgels. Journal of Physical Chemistry B, 2010, 114, 3799-3803.	2.6	19
152	pH Induced DNA Folding at Interface. Journal of Physical Chemistry B, 2010, 114, 775-779.	2.6	23
153	Synthesis and Self Assembling Properties of Rod-Like, 2-Ureido-4-pyrimidinone-Based Main Chain Supramolecular Dendronized Polymers. Macromolecules, 2010, 43, 8389-8399.	4.8	16
154	Dual templating synthesis of hierarchical porous silica materials with three orders of length scale. Chemical Communications, 2010, 46, 8767.	4.1	30
155	Synthesis of Organometallic Poly(dendrimer)s by Macromonomer Polymerization: Effect of Dendrimer Size and Structural Rigidity on the Polymerization Efficiency. Chemistry - A European Journal, 2009, 15, 2278-2288.	3.3	10
156	High Internal Phase Emulsions Stabilized Solely by Microgel Particles. Angewandte Chemie - International Edition, 2009, 48, 8490-8493.	13.8	221
157	Emulsion-Templated Liquid Coreâ^'Polymer Shell Microcapsule Formation. Langmuir, 2009, 25, 2572-2574.	3.5	62
158	pH-Controllable Depletion Attraction Induced by Microgel Particles. Macromolecules, 2009, 42, 7271-7274.	4.8	22
159	Direct measurement of the nanobubble-induced weak depletion attraction between a spherical particle and a flat surface in an aqueous solution. Soft Matter, 2008, 4, 968.	2.7	36
160	Folding of Long Multiblock Copolymer (PI-b-PS-b-PI)nChains Prepared by the Self-Assembly Assisted Polypolymerization (SAAP) in Cyclohexane. Macromolecules, 2008, 41, 2219-2227.	4.8	33
161	Depletion Attraction between a Polystyrene Particle and a Hydrophilic Surface in a Pluronic Aqueous Solution. Langmuir, 2008, 24, 13912-13917.	3.5	15
162	Two Calorimetric Glass Transitions in Miscible Blends Containing Poly(ethylene oxide). Macromolecules, 2008, 41, 2502-2508.	4.8	84

#	Article	IF	CITATIONS
163	Self-Organization of Double-C ₆₀ End-Capped Poly(ethylene oxide) in Chloronaphthalene and Benzene Solvent Mixtures. Langmuir, 2007, 23, 12067-12070.	3.5	7
164	Structure and Kinetics of Cluster Decomposition of Polystyrene Star Chains in Dilute Solutions. Macromolecules, 2007, 40, 6796-6798.	4.8	1
165	Environmental Responsiveness of Microgel Particles and Particle-Stabilized Emulsions. Macromolecules, 2006, 39, 8171-8177.	4.8	211
166	Synthesis, characterization, and degradation of silicon(IV) phthalocyanines conjugated axially with poly(sebacic anhydride). Journal of Polymer Science Part A, 2005, 43, 837-843.	2.3	11
167	Novel emulsions stabilized by pH and temperature sensitive microgels. Chemical Communications, 2005, , 331.	4.1	324
168	Double Roles of Stabilization and Destabilization of Initiator Potassium Persulfate in Surfactant-Free Emulsion Polymerization of Styrene under Microwave Irradiationâ€. Langmuir, 2005, 21, 8520-8525.	3.5	29
169	Reexamination of slow relaxation of polymer chains in sol–gel transition. Polymer, 2004, 45, 1739-1742.	3.8	11
170	Origins of the Speckles and Slow Dynamics of Polymer Gels. Journal of Physical Chemistry B, 2004, 108, 5532-5540.	2.6	31
171	Effects of Temperature and Swelling on Chain Dynamics during the Solâ^'Gel Transition. Macromolecules, 2004, 37, 987-993.	4.8	28
172	Self-Assembly Assisted Coupling of End Functional Block Copolymers. Macromolecules, 2003, 36, 7405-7408.	4.8	10
173	Effect of Cross-Linking on Dynamics of Semidilute Copolymer Solutions:Â Poly(methyl) Tj ETQq1 1 0.784314 rgBT	10yerlock	10 Tf 50 3
174	Synthesis, Characterization, Biodegradation, and in Vitro Photodynamic Activities of Silicon(IV) Phthalocyanines Conjugated Axially with Poly(ε-caprolactone). Macromolecules, 2003, 36, 7527-7533.	4.8	33
175	Transient Absorption and Fluorescence Studies of Disstacking Phthalocyanine by Poly(ethylene oxide). Macromolecules, 2002, 35, 3681-3685.	4.8	28
176	Disstacking of Phthalocyanine in Water by Poly(ethylene Oxide). Langmuir, 2001, 17, 1381-1383.	3.5	27
177	Monomerization of Cationic Phthalocyanine in AOT Reversed Micellesâ€. Langmuir, 2001, 17, 7957-7959.	3.5	17