Qing-Long Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5844833/publications.pdf

Version: 2024-02-01

563 41,350 111 187
papers citations h-index g-index

583 583 583 9867
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Delay System Method for Designing Event-Triggered Controllers of Networked Control Systems. JEEF Transactions on Automatic Control, 2013, 58, 475,481, Network-based robust mmi:math-altimg="si2:gif">milione overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema"	3.6	1,356
2	xmlns:xs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevie.	3.0	1,022
3	An Overview of Recent Advances in Event-Triggered Consensus of Multiagent Systems. IEEE Transactions on Cybernetics, 2018, 48, 1110-1123.	6.2	820
4	State Feedback Controller Design of Networked Control Systems. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2004, 51, 640-644.	2.3	715
5	A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing, 2018, 275, 1674-1683.	3.5	694
6	A distributed event-triggered transmission strategy for sampled-data consensus of multi-agent systems. Automatica, 2014, 50, 1489-1496.	3.0	609
7	Survey on Recent Advances in Networked Control Systems. IEEE Transactions on Industrial Informatics, 2016, 12, 1740-1752.	7.2	608
8	An Overview and Deep Investigation on Sampled-Data-Based Event-Triggered Control and Filtering for Networked Systems. IEEE Transactions on Industrial Informatics, 2017, 13, 4-16.	7.2	593
9	Absolute stability of time-delay systems with sector-bounded nonlinearity. Automatica, 2005, 41, 2171-2176.	3.0	535
10	Distributed networked control systems: A brief overview. Information Sciences, 2017, 380, 117-131.	4.0	505
11	Distributed Formation Control of Networked Multi-Agent Systems Using a Dynamic Event-Triggered Communication Mechanism. IEEE Transactions on Industrial Electronics, 2017, 64, 8118-8127.	5.2	496
12	An Overview of Recent Advances in Fixed-Time Cooperative Control of Multiagent Systems. IEEE Transactions on Industrial Informatics, 2018, 14, 2322-2334.	7.2	428
13	Delay-dependent exponential stability of stochastic systems with time-varying delay, nonlinearity, and Markovian switching. IEEE Transactions on Automatic Control, 2005, 50, 217-222.	3.6	387
14	Security Control for Discrete-Time Stochastic Nonlinear Systems Subject to Deception Attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 779-789.	5.9	372
15	A Dynamic Event-Triggered Transmission Scheme for Distributed Set-Membership Estimation Over Wireless Sensor Networks. IEEE Transactions on Cybernetics, 2019, 49, 171-183.	6.2	366
16	A Survey on Model-Based Distributed Control and Filtering for Industrial Cyber-Physical Systems. IEEE Transactions on Industrial Informatics, 2019, 15, 2483-2499.	7.2	360
17	An improved reciprocally convex inequality and an augmented Lyapunov–Krasovskii functional for stability of linear systems with time-varying delay. Automatica, 2017, 84, 221-226.	3.0	351
18	Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design. Automatica, 2015, 62, 249-262.	3.0	350

#	Article	IF	CITATIONS
19	Network-based leader-following consensus for distributed multi-agent systems. Automatica, 2013, 49, 2281-2286.	3.0	331
20	To Transmit or Not to Transmit: A Discrete Event-Triggered Communication Scheme for Networked Takagi–Sugeno Fuzzy Systems. IEEE Transactions on Fuzzy Systems, 2013, 21, 164-170.	6.5	325
21	Distributed Event-Triggered Estimation Over Sensor Networks: A Survey. IEEE Transactions on Cybernetics, 2020, 50, 1306-1320.	6.2	322
22	Event-based <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>â^ž<td>ml:360 ml:mi><td>nml:mrow></td></td></mml:mi></mml:mrow></mml:msub></mml:math>	ml:360 ml:mi> <td>nml:mrow></td>	nml:mrow>
23	Eventâ€triggered dynamic output feedback control for networked control systems. IET Control Theory and Applications, 2014, 8, 226-234.	1.2	319
24	Dynamic Event-Triggered Distributed Coordination Control and its Applications: A Survey of Trends and Techniques. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 3112-3125.	5.9	318
25	An Overview of Recent Advances in Coordinated Control of Multiple Autonomous Surface Vehicles. FEE Transactions on Industrial Informatics 2021 17, 732,745, On < minimath altimg="s11.gif" display="inline" overflow="scroll"	7.2	306
26	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	3.0	304
27	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/x Secure State Estimation and Control of Cyber-Physical Systems: A Survey. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 176-190.	5. 9	304
28	A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems. Neurocomputing, 2018, 275, 1684-1701.	3 . 5	301
29	State estimation under false data injection attacks: Security analysis and system protection. Automatica, 2018, 87, 176-183.	3.0	300
30	A Novel Event-Triggered Transmission Scheme and <formula formulatype="inline"><tex notation="TeX">\${cal L}_{2}\$</tex></formula> Control Co-Design for Sampled-Data Control Systems. IEEE Transactions on Automatic Control, 2013, 58, 2620-2626.	3.6	280
31	Adaptive Consensus Control of Linear Multiagent Systems With Dynamic Event-Triggered Strategies. IEEE Transactions on Cybernetics, 2020, 50, 2996-3008.	6.2	278
32	Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Information Sciences, 2017, 380, 145-158.	4.0	264
33	A New \$H_{{m infty}}\$ Stabilization Criterion for Networked Control Systems. IEEE Transactions on Automatic Control, 2008, 53, 1025-1032.	3.6	258
34	Networked control systems: a survey of trends and techniques. IEEE/CAA Journal of Automatica Sinica, 2020, 7, 1-17.	8.5	258
35	Resilient Control Design Based on a Sampled-Data Model for a Class of Networked Control Systems Under Denial-of-Service Attacks. IEEE Transactions on Cybernetics, 2020, 50, 3616-3626.	6.2	258
36	A Set-Membership Approach to Event-Triggered Filtering for General Nonlinear Systems Over Sensor Networks. IEEE Transactions on Automatic Control, 2020, 65, 1792-1799.	3.6	256

#	Article	IF	CITATIONS
37	Robust stability of uncertain delay-differential systems of neutral type. Automatica, 2002, 38, 719-723.	3.0	255
38	Network-based output tracking control for T–S fuzzy systems using an event-triggered communication scheme. Fuzzy Sets and Systems, 2015, 273, 26-48.	1.6	254
39	Distributed Krein space-based attack detection over sensor networks under deception attacks. Automatica, 2019, 109, 108557.	3.0	248
40	Delayed feedback control of uncertain systems with time-varying input delay. Automatica, 2005, 41, 233-240.	3.0	246
41	Detecting and Preventing Cyber Insider Threats: A Survey. IEEE Communications Surveys and Tutorials, 2018, 20, 1397-1417.	24.8	246
42	Distributed event-triggered <mml:math altimg="si16.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< td=""><td>nl:mi>â^ž<</td><td>/mml:mi></td></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nl:mi>â^ž<	/mml:mi>
43	Network-based modelling and dynamic output feedback control for unmanned marine vehicles in network environments. Automatica, 2018, 91, 43-53.	3.0	244
44	Achieving Cluster Formation of Multi-Agent Systems Under Aperiodic Sampling and Communication Delays. IEEE Transactions on Industrial Electronics, 2018, 65, 3417-3426.	5.2	239
45	Distributed Secondary Control for Active Power Sharing and Frequency Regulation in Islanded Microgrids Using an Event-Triggered Communication Mechanism. IEEE Transactions on Industrial Informatics, 2019, 15, 3910-3922.	7.2	238
46	New Lyapunov–Krasovskii Functionals for Global Asymptotic Stability of Delayed Neural Networks. IEEE Transactions on Neural Networks, 2009, 20, 533-539.	4.8	235
47	A discrete delay decomposition approach to stability of linear retarded and neutral systems. Automatica, 2009, 45, 517-524.	3.0	231
48	Observer-Based Event-Triggered Control for Networked Linear Systems Subject to Denial-of-Service Attacks. IEEE Transactions on Cybernetics, 2020, 50, 1952-1964.	6.2	231
49	Leader-Following Consensus of Nonlinear Multiagent Systems With Stochastic Sampling. IEEE Transactions on Cybernetics, 2016, 47, 1-12.	6.2	230
50	Global Asymptotic Stability for a Class of Generalized Neural Networks With Interval Time-Varying Delays. IEEE Transactions on Neural Networks, 2011, 22, 1180-1192.	4.8	225
51	Overview of recent advances in stability of linear systems with timeâ€varying delays. IET Control Theory and Applications, 2019, 13, 1-16.	1.2	223
52	Delay-dependent robust stability for uncertain linear systems with interval time-varying delay. Automatica, 2006, 42, 1059-1065.	3.0	220
53	A Decentralized Event-Triggered Dissipative Control Scheme for Systems With Multiple Sensors to Sample the System Outputs. IEEE Transactions on Cybernetics, 2016, 46, 2745-2757.	6.2	217
	mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si20.gif" display="inline"		

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si20.gif" display="inline" overflow="scroll"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></m

	#	Article	IF	CITATIONS
	55	Network-Based T–S Fuzzy Dynamic Positioning Controller Design for Unmanned Marine Vehicles. IEEE Transactions on Cybernetics, 2018, 48, 2750-2763.	6.2	215
	56	Path-Following Control of Autonomous Underwater Vehicles Subject to Velocity and Input Constraints via Neurodynamic Optimization. IEEE Transactions on Industrial Electronics, 2019, 66, 8724-8732.	5.2	215
	57	Distributed Cooperative Optimal Control of DC Microgrids With Communication Delays. IEEE Transactions on Industrial Informatics, 2018, 14, 3924-3935.	7.2	214
	58	Software Vulnerability Detection Using Deep Neural Networks: A Survey. Proceedings of the IEEE, 2020, 108, 1825-1848.	16.4	214
	59	Network-based <mml:math altimg="si6.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi mathvariant="script"> H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi> a^ž</mml:mi> </mml:mrow> <filtering 1428-1435.<="" 2013.="" 49.="" a="" automatica.="" jumping-like="" logic="" td="" trigger.="" using=""><td>3.0 /mml:mat</td><td>,213 n></td></filtering></mml:msub></mml:math>	3.0 /mml:mat	,213 n>
	60	Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach. Neural Networks, 2014, 54, 57-69.	3.3	210
	61	Event-Triggered Generalized Dissipativity Filtering for Neural Networks With Time-Varying Delays. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 77-88.	7.2	210
	62	An overview of recent developments in Lyapunov–Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing, 2018, 313, 392-401.	3.5	207
	63	On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty. Automatica, 2004, 40, 1087-1092.	3.0	206
	64	Practical fixed-time consensus for integrator-type multi-agent systems: A time base generator approach. Automatica, 2019, 105, 406-414.	3.0	206
	65	A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays. Automatica, 2004, 40, 1791-1796.	3.0	205
	66	Event-triggered H</mml:mi><a href=" mailto:<="" td=""><td>mi>2.1</td><td>l:mrow></td>	mi>2.1	l:mrow>
	67	Event-Based Set-Membership Leader-Following Consensus of Networked Multi-Agent Systems Subject to Limited Communication Resources and Unknown-But-Bounded Noise. IEEE Transactions on Industrial Electronics, 2017, 64, 5045-5054.	5.2	198
	68	New stability criteria for linear systems with interval time-varying delay. Automatica, 2008, 44, 2680-2685.	3.0	196
	69	State Estimation for Static Neural Networks With Time-Varying Delays Based on an Improved Reciprocally Convex Inequality. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 1376-1381.	7.2	196
_	70	Distributed Optimization for Multiagent Systems: An Edge-Based Fixed-Time Consensus Approach. IEEE Transactions on Cybernetics, 2019, 49, 122-132.	6.2	196
	71	A Threshold-Parameter-Dependent Approach to Designing Distributed Event-Triggered \$H_{infty}\$ Consensus Filters Over Sensor Networks. IEEE Transactions on Cybernetics, 2019, 49, 1148-1159.	6.2	195
	72	Sliding Mode Control With Mixed Current and Delayed States for Offshore Steel Jacket Platforms. IEEE Transactions on Control Systems Technology, 2014, 22, 1769-1783.	3.2	192

#	Article	IF	Citations
73	Consensus of Multiagent Systems Subject to Partially Accessible and Overlapping Markovian Network Topologies. IEEE Transactions on Cybernetics, 2017, 47, 1807-1819.	6.2	192
74	Event-triggered <i>H</i> _{<i>â^ž</i>} control for a class of nonlinear networked control systems using novel integral inequalities. International Journal of Robust and Nonlinear Control, 2017, 27, 679-700.	2.1	190
75	Robust <tex>\$H_infty\$</tex> Filter Design of Uncertain Descriptor Systems with Discrete and Distributed Delays. IEEE Transactions on Signal Processing, 2004, 52, 3200-3212.	3.2	187
76	Neural-Network-Based Output-Feedback Control Under Round-Robin Scheduling Protocols. IEEE Transactions on Cybernetics, 2019, 49, 2372-2384.	6.2	187
77	Robust <mml:math altimg="si11.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mo>â^ž<td>nl:mo><td>$183 \ ext{nml:mrow}$</td></td></mml:mo></mml:mrow></mml:msub></mml:math>	nl:mo> <td>$183 \ ext{nml:mrow}$</td>	$183 \ ext{nml:mrow}$
78	Recent advances in vibration control of offshore platforms. Nonlinear Dynamics, 2017, 89, 755-771.	2.7	183
79	Hierarchical Type Stability Criteria for Delayed Neural Networks via Canonical Bessel–Legendre Inequalities. IEEE Transactions on Cybernetics, 2018, 48, 1660-1671.	6.2	183
80	Abel lemma-based finite-sum inequality and its application to stability analysis for linear discrete time-delay systems. Automatica, 2015, 57, 199-202.	3.0	180
81	Neuronal State Estimation for Neural Networks With Two Additive Time-Varying Delay Components. IEEE Transactions on Cybernetics, 2017, 47, 3184-3194.	6.2	174
82	Collective Behaviors of Mobile Robots Beyond the Nearest Neighbor Rules With Switching Topology. IEEE Transactions on Cybernetics, 2018, 48, 1577-1590.	6.2	170
83	Prescribed Finite-Time Consensus Tracking for Multiagent Systems With Nonholonomic Chained-Form Dynamics. IEEE Transactions on Automatic Control, 2019, 64, 1686-1693.	3.6	169
84	New Stability Criteria for Linear Discrete-Time Systems With Interval-Like Time-Varying Delays. IEEE Transactions on Automatic Control, 2011, 56, 619-625.	3.6	159
85	Moving Horizon Estimation for Networked Time-Delay Systems Under Round-Robin Protocol. IEEE Transactions on Automatic Control, 2019, 64, 5191-5198.	3.6	157
86	Dynamic Event-Triggered Scheduling and Platooning Control Co-Design for Automated Vehicles Over Vehicular Ad-Hoc Networks. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 31-46.	8.5	156
87	On Designing a Novel Self-Triggered Sampling Scheme for Networked Control Systems With Data Losses and Communication Delays. IEEE Transactions on Industrial Electronics, 2016, 63, 1239-1248.	5.2	155
88	Deep Learning Based Attack Detection for Cyber-Physical System Cybersecurity: A Survey. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 377-391.	8.5	150
89	Distributed Resilient Finite-Time Secondary Control for Heterogeneous Battery Energy Storage Systems Under Denial-of-Service Attacks. IEEE Transactions on Industrial Informatics, 2020, 16, 4909-4919.	7.2	148
90	Consensus of Multiagent Systems With Nonlinear Dynamics Using an Integrated Sampled-Data-Based Event-Triggered Communication Scheme. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 589-599.	5.9	147

#	Article	IF	Citations
91	Admissible Delay Upper Bounds for Global Asymptotic Stability of Neural Networks With Time-Varying Delays. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 5319-5329.	7.2	141
92	Synchronization Error Estimation and Controller Design for Delayed Lur'e Systems With Parameter Mismatches. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 1551-1563.	7.2	140
93	Ultimate Boundedness Control for Networked Systems With Try-Once-Discard Protocol and Uniform Quantization Effects. IEEE Transactions on Automatic Control, 2017, 62, 6582-6588.	3.6	140
94	Synchronization Control for a Class of Discrete-Time Dynamical Networks With Packet Dropouts: A Coding–Decoding-Based Approach. IEEE Transactions on Cybernetics, 2018, 48, 2437-2448.	6.2	138
95	Network-Based Fault Detection Filter and Controller Coordinated Design for Unmanned Surface Vehicles in Network Environments. IEEE Transactions on Industrial Informatics, 2016, 12, 1753-1765.	7.2	136
96	Network-Based Modeling and Proportional–Integral Control for Direct-Drive-Wheel Systems in Wireless Network Environments. IEEE Transactions on Cybernetics, 2020, 50, 2462-2474.	6.2	135
97	On Designing Fuzzy Controllers for a Class of Nonlinear Networked Control Systems. IEEE Transactions on Fuzzy Systems, 2008, 16, 1050-1060.	6.5	133
98	On Designing Time-Varying Delay Feedback Controllers for Master& Designing Time-Varying Delay Feedback Controllers for Master Designing Time-Varying Time-Varying Delay Feedback Controllers for Master Designing Time-Varying Time-Vary	0.1	132
99	Robust \$H_{infty}\$ Control for Uncertain Takagi–Sugeno Fuzzy Systems With Interval Time-Varying Delay. IEEE Transactions on Fuzzy Systems, 2007, 15, 321-331.	6.5	132
100	Consensus control of stochastic multi-agent systems: a survey. Science China Information Sciences, 2017, 60, 1.	2.7	131
101	Moving Horizon Estimation of Networked Nonlinear Systems With Random Access Protocol. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 2937-2948.	5.9	130
102	Novel delayâ€derivativeâ€dependent stability criteria using new bounding techniques. International Journal of Robust and Nonlinear Control, 2013, 23, 1419-1432.	2.1	129
103	Variance-Constrained Distributed Filtering for Time-Varying Systems With Multiplicative Noises and Deception Attacks Over Sensor Networks. IEEE Sensors Journal, 2017, 17, 2279-2288.	2.4	128
104	A Delay-Dependent Stability Criterion of Neutral Systems and its Application to a Partial Element Equivalent Circuit Model. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2004, 51, 685-689.	2.3	126
105	Bipartite Consensus Tracking for Second-Order Multiagent Systems: A Time-Varying Function-Based Preset-Time Approach. IEEE Transactions on Automatic Control, 2021, 66, 2739-2745.	3.6	124
106	Sampled-data control for a class of linear time-varying systems. Automatica, 2019, 103, 126-134.	3.0	120
107	Secure Distributed Finite-Time Filtering for Positive Systems Over Sensor Networks Under Deception Attacks. IEEE Transactions on Cybernetics, 2020, 50, 1220-1229.	6.2	118
108	A Novel Cyber Attack Detection Method in Networked Control Systems. IEEE Transactions on Cybernetics, 2018, 48, 3254-3264.	6.2	117

#	Article	IF	CITATIONS
109	On stability of linear neutral systems with mixed time delays: A discretized Lyapunov functional approach. Automatica, 2005, 41, 1209-1218.	3.0	115
110	Network-Based Output Tracking Control for a Class of T-S Fuzzy Systems That Can Not Be Stabilized by Nondelayed Output Feedback Controllers. IEEE Transactions on Cybernetics, 2015, 45, 1511-1524.	6.2	114
111	Robust stability for a class of linear systems with time-varying delay and nonlinear perturbations. Computers and Mathematics With Applications, 2004, 47, 1201-1209.	1.4	112
112	Towards Long Lifetime Battery: Al-Based Manufacturing and Management. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 1139-1165.	8.5	111
113	Multiagent Systems on Multilayer Networks: Synchronization Analysis and Network Design. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 1655-1667.	5.9	110
114	Distributed Finite-Time Secondary Frequency and Voltage Control for Islanded Microgrids With Communication Delays and Switching Topologies. IEEE Transactions on Cybernetics, 2021, 51, 3988-3999.	6.2	108
115	Improved stability criteria and controller design for linear neutral systems. Automatica, 2009, 45, 1948-1952.	3.0	107
116	Finite-Time \$mathcal{L}_{2}\$ Leaderâ€"Follower Consensus of Networked Eulerâ€"Lagrange Systems With External Disturbances. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 1920-1928.	5.9	107
117	Absolute stability of Lur'e systems with time-varying delay. IET Control Theory and Applications, 2007, 1, 854-859.	1.2	106
118	Fault-Tolerant Cooperative Control of Multiagent Systems: A Survey of Trends and Methodologies. IEEE Transactions on Industrial Informatics, 2020, 16, 4-17.	7.2	105
119	Network-Based Robust\$H_infty\$Filtering for Uncertain Linear Systems. IEEE Transactions on Signal Processing, 2006, 54, 4293-4301.	3.2	104
120	Event-Based Variance-Constrained \${mathcal {H}}_{infty }\$ Filtering for Stochastic Parameter Systems Over Sensor Networks With Successive Missing Measurements. IEEE Transactions on Cybernetics, 2018, 48, 1007-1017.	6.2	104
121	Event-triggered fuzzy Hâ^ž control for a class of nonlinear networked control systems using the deviation bounds of asynchronous normalized membership functions. Information Sciences, 2014, 259, 100-117.	4.0	101
122	Optimal Communication Network-Based \$H_infty \$ Quantized Control With Packet Dropouts for a Class of Discrete-Time Neural Networks With Distributed Time Delay. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 426-434.	7.2	101
123	Cooperative Control of Mobile Sensor Networks for Environmental Monitoring: An Event-Triggered Finite-Time Control Scheme. IEEE Transactions on Cybernetics, 2017, 47, 4134-4147.	6.2	99
124	Finite-Time \$H_{infty}\$ State Estimation for Discrete Time-Delayed Genetic Regulatory Networks Under Stochastic Communication Protocols. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 3481-3491.	3.5	99
125	\$mathcal{H}_{infty}\$ Containment Control of Multiagent Systems Under Event-Triggered Communication Scheduling: The Finite-Horizon Case. IEEE Transactions on Cybernetics, 2020, 50, 1372-1382.	6.2	99
126	A dynamic event-triggered approach to observer-based PID security control subject to deception attacks. Automatica, 2020, 120, 109128.	3.0	98

#	Article	IF	CITATIONS
127	Lag Quasi-Synchronization of Coupled Delayed Systems With Parameter Mismatch. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58, 1345-1357.	3.5	96
128	New Delay-Dependent Stability Criteria for Neural Networks With Two Additive Time-Varying Delay Components. IEEE Transactions on Neural Networks, 2011, 22, 812-818.	4.8	95
129	Dissipative control for nonlinear Markovian jump systems with actuator failures and mixed time-delays. Automatica, 2018, 98, 358-362.	3.0	95
130	Sampled-data robust control for T–S fuzzy systems with time delay and uncertainties. Fuzzy Sets and Systems, 2011, 179, 20-33.	1.6	94
131	Consensus Control of Multi-Agent Systems Using Fault-Estimation-in-the-Loop: Dynamic Event-Triggered Case. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 1440-1451.	8.5	93
132	Distributed Cyber Attacks Detection and Recovery Mechanism for Vehicle Platooning. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 3821-3834.	4.7	91
133	A Novel Framework for Backstepping-Based Control of Discrete-Time Strict-Feedback Nonlinear Systems With Multiplicative Noises. IEEE Transactions on Automatic Control, 2021, 66, 1484-1496.	3.6	91
134	Sliding mode control for offshore steel jacket platforms subject to nonlinear self-excited wave force and external disturbance. Nonlinear Analysis: Real World Applications, 2013, 14, 163-178.	0.9	90
135	A new delay-dependent stability criterion for linear neutral systems with norm-bounded uncertainties in all system matrices. International Journal of Systems Science, 2005, 36, 469-475.	3.7	88
136	Robust Estimation for State-of-Charge and State-of-Health of Lithium-Ion Batteries Using Integral-Type Terminal Sliding-Mode Observers. IEEE Transactions on Industrial Electronics, 2020, 67, 4013-4023.	5.2	88
137	Dynamic Event-triggered Control and Estimation: A Survey. International Journal of Automation and Computing, 2021, 18, 857-886.	4.5	88
138	Neuralâ€networkâ€based control for discreteâ€time nonlinear systems with denialâ€ofâ€service attack: The adaptive eventâ€triggered case. International Journal of Robust and Nonlinear Control, 2022, 32, 2760-2779.	2.1	88
139	Discretized Lyapunov functional for systems with distributed delay and piecewise constant coefficients. International Journal of Control, 2001, 74, 737-744.	1.2	87
140	Effects of small time-delays on dynamic output feedback control of offshore steel jacket structures. Journal of Sound and Vibration, 2011, 330, 3883-3900.	2.1	86
141	Delay-Dependent Robust <formula formulatype="inline"> <tex>\$H_{infty}\$</tex></formula> Filtering for Uncertain Discrete-Time Systems With Time-Varying Delay Based on a Finite Sum Inequality. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2006, 53, 1466-1470.	2.3	85
142	Control With Markov Sensors/Actuators Assignment. IEEE Transactions on Automatic Control, 2012, 57, 1799-1804.	3.6	85
143	Neural-Network-Based Consensus Control for Multiagent Systems With Input Constraints: The Event-Triggered Case. IEEE Transactions on Cybernetics, 2020, 50, 3719-3730.	6.2	85
144	Finite-time containment control for nonlinear multi-agent systems with external disturbances. Information Sciences, 2020, 512, 338-351.	4.0	84

#	Article	IF	CITATIONS
145	Fixed-Time Leader-Following Consensus for Multiple Wheeled Mobile Robots. IEEE Transactions on Cybernetics, 2020, 50, 4381-4392.	6.2	84
146	Almost Sure Stability of Nonlinear Systems Under Random and Impulsive Sequential Attacks. IEEE Transactions on Automatic Control, 2020, 65, 3879-3886.	3.6	84
147	Integrated control of ground vehicles dynamics via advanced terminal sliding mode control. Vehicle System Dynamics, 2017, 55, 268-294.	2.2	83
148	Envelope-constrained <mml:math altimg="si3.gif" display="inline" id="mml3" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>â^ž<td>:m\$₃@/mm</td><td>ll:n8120w></td></mml:mi></mml:mrow></mml:msub></mml:math>	:m\$₃@/mm	ll:n 812 0w>
149	93, 527-534. Secure Control of Multiagent Systems Against Malicious Attacks: A Brief Survey. IEEE Transactions on Industrial Informatics, 2022, 18, 3595-3608.	7.2	82
150	Robust adaptive fault-tolerant consensus control for uncertain nonlinear fractional-order multi-agent systems with directed topologies. Automatica, 2020, 117, 109011.	3.0	81
151	Stability criteria for linear discrete-time systems with interval-like time-varying delay. , 0, , .		80
152	Stability of Linear Systems With Timeâ€Varying Delay: a Generalized Discretized Lyapunov Functional Approach. Asian Journal of Control, 2001, 3, 170-180.	1.9	80
153	Robust stability of linear neutral systems with nonlinear parameter perturbations. IET Control Theory and Applications, 2004, 151, 539-546.	1.7	79
154	Impulsive synchronization of two nonidentical chaotic systems with time-varying delay. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 498-504.	0.9	79
155	Integral sliding mode control for offshore steel jacket platforms. Journal of Sound and Vibration, 2012, 331, 3271-3285.	2.1	79
156	Delay-dependent robust Hâ^ž controller design for uncertain descriptor systems with time-varying discrete and distributed delays. IET Control Theory and Applications, 2005, 152, 628-638.	1.7	78
157	\$L_1\$-Stochastic Stability and \$L_1\$-Gain Performance of Positive Markov Jump Linear Systems With Time-Delays: Necessary and Sufficient Conditions. IEEE Transactions on Automatic Control, 2017, 62, 3634-3639.	3.6	78
158	Data-Driven Cyber Security in Perspectiveâ€"Intelligent Traffic Analysis. IEEE Transactions on Cybernetics, 2020, 50, 3081-3093.	6.2	78
159	Neural-network-based output-feedback control with stochastic communication protocols. Automatica, 2019, 106, 221-229.	3.0	77
160	A delay decomposition approach to delayâ€dependent stability for linear systems with timeâ€varying delays. International Journal of Robust and Nonlinear Control, 2009, 19, 1922-1930.	2.1	75
161	Network-Based Synchronization of Delayed Neural Networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 676-689.	3.5	75
162	Communication-Delay-Distribution-Dependent Decentralized Control for Large-Scale Systems With IP-Based Communication Networks. IEEE Transactions on Control Systems Technology, 2013, 21, 820-830.	3.2	75

#	Article	IF	CITATIONS
163	A new delay-dependent absolute stability criterion for a class of nonlinear neutral systems. Automatica, 2008, 44, 272-277.	3.0	74
164	Distributed Path Following of Multiple Under-Actuated Autonomous Surface Vehicles Based on Data-Driven Neural Predictors via Integral Concurrent Learning. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 5334-5344.	7.2	74
165	How often should one update control and estimation: review of networked triggering techniques. Science China Information Sciences, 2020, 63, 1.	2.7	73
166	On robust stability of time-delay systems with norm-bounded uncertainty. IEEE Transactions on Automatic Control, 2001, 46, 1426-1431.	3.6	72
167	Sufficient conditions for a class of matrix-valued polynomial inequalities on closed intervals and application to <mml:math altimg="si4.svg" display="inline" id="d1e568" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:misub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>â^ž<td>3.0 l:mi><td>72 nl:mrow></td></td></mml:mi></mml:mrow></mml:misub></mml:math>	3.0 l:mi> <td>72 nl:mrow></td>	72 nl:mrow>
168	filtering for linear systems with time varying delays. Automatica, 2021, 125, 100000. Hâ^ž control for networked systems with multiple packet dropouts. Information Sciences, 2013, 252, 106-117.	4.0	71
169	Fault detection filter design for data reconstruction-based continuous-time networked control systems. Information Sciences, 2016, 328, 577-594.	4.0	71
170	Observer-Based Incremental Predictive Control of Networked Multi-Agent Systems With Random Delays and Packet Dropouts. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 426-430.	2,2	70
171	Parity Space-Based Fault Estimation for Linear Discrete Time-Varying Systems. IEEE Transactions on Automatic Control, 2010, 55, 1726-1731.	3.6	69
172	Unmanned Aerial Vehicles: Control Methods and Future Challenges. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 601-614.	8.5	69
173	Delay-range-dependent robust stabilization for uncertain T–S fuzzy control systems with interval time-varying delays. Information Sciences, 2011, 181, 4287-4299.	4.0	68
174	A novel approach to <mml:math altimg="si4.svg" display="inline" id="d1e269" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>â^ž<td>l:nsio<td>nl:1880w></td></td></mml:mi></mml:mrow></mml:msub></mml:math>	l:n sio <td>nl:1880w></td>	nl: 188 0w>
175	dropouts. Automatica, 2022, 136, 110010. Regional Stabilization for Discrete Time-Delay Systems With Actuator Saturations via A Delay-Dependent Polytopic Approach. IEEE Transactions on Automatic Control, 2019, 64, 1257-1264.	3.6	66
176	Network-Based Heading Control and Rudder Oscillation Reduction for Unmanned Surface Vehicles. IEEE Transactions on Control Systems Technology, 2017, 25, 1609-1620.	3.2	65
177	New delay-dependent synchronization criteria for Lur'e systems using time delay feedback control. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 360, 563-569.	0.9	63
178	Resilient and secure remote monitoring for a class of cyber-physical systems against attacks. Information Sciences, 2020, 512, 1592-1605.	4.0	62
179	Deep Learning-Based Autonomous Driving Systems: A Survey of Attacks and Defenses. IEEE Transactions on Industrial Informatics, 2021, 17, 7897-7912.	7.2	62
180	Distributed fault detection over sensor networks with Markovian switching topologies. International Journal of General Systems, 2014, 43, 305-318.	1.2	61

#	Article	IF	Citations
181	Network-based modelling and active control for offshore steel jacket platform with TMD mechanisms. Journal of Sound and Vibration, 2014, 333, 6796-6814.	2.1	61
182	A Novel Networked Predictive Control Method for Systems with Random Communication Constraints. Journal of Systems Science and Complexity, 2021, 34, 1364-1378.	1.6	61
183	Advances in Line-of-Sight Guidance for Path Following of Autonomous Marine Vehicles: An Overview. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53, 12-28.	5.9	61
184	Full Information Estimation for Time-Varying Systems Subject to Round-Robin Scheduling: A Recursive Filter Approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 1904-1916.	5.9	60
185	Secure Distributed Adaptive Platooning Control of Automated Vehicles Over Vehicular Ad-Hoc Networks Under Denial-of-Service Attacks. IEEE Transactions on Cybernetics, 2022, 52, 12003-12015.	6.2	60
186	Machine Learning–based Cyber Attacks Targeting on Controlled Information. ACM Computing Surveys, 2022, 54, 1-36.	16.1	59
187	Event-triggered dissipative control for networked stochastic systems under non-uniform sampling. Information Sciences, 2018, 447, 216-228.	4.0	58
188	Global Asymptotic Stability for Delayed Neural Networks Using an Integral Inequality Based on Nonorthogonal Polynomials. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 4487-4493.	7.2	58
189	Distributed Energy Management for Smart Grids With an Event-Triggered Communication Scheme. IEEE Transactions on Control Systems Technology, 2019, 27, 1950-1961.	3.2	58
190	Distributed sampled-data asynchronous Hâ^ž filtering of Markovian jump linear systems over sensor networks. Signal Processing, 2016, 127, 86-99.	2.1	55
191	Distributed \$H_infty\$ State Estimation Over a Filtering Network With Time-Varying and Switching Topology and Partial Information Exchange. IEEE Transactions on Cybernetics, 2019, 49, 870-882.	6.2	55
192	Decentralized Dynamic Event-Triggered Communication and Active Suspension Control of In-Wheel Motor Driven Electric Vehicles with Dynamic Damping. IEEE/CAA Journal of Automatica Sinica, 2021, 8, 971-986.	8.5	55
193	Fault-Tolerant Master–Slave Synchronization for Lur'e Systems Using Time-Delay Feedback Control. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56, 1391-1404.	3.5	54
194	Sampling-interval-dependent stability for sampled-data systems with state quantization. International Journal of Robust and Nonlinear Control, 2014, 24, 2995-3008.	2.1	53
195	A Finite-Time Motion Control Strategy for Odor Source Localization. IEEE Transactions on Industrial Electronics, 2014, 61, 5419-5430.	5.2	52
196	Distributed networked set-membership filtering with ellipsoidal state estimations. Information Sciences, 2018, 432, 52-62.	4.0	52
197	Passivity Analysis of Delayed Neural Networks Based on Lyapunov–Krasovskii Functionals With Delay-Dependent Matrices. IEEE Transactions on Cybernetics, 2020, 50, 946-956.	6.2	52
198	Disturbance observers and extended state observers for marine vehicles: A survey. Control Engineering Practice, 2022, 123, 105158.	3.2	52

#	Article	IF	Citations
199	Network-Based \$H_{infty}\$ Filtering for Discrete-Time Systems. IEEE Transactions on Signal Processing, 2012, 60, 956-961.	3.2	51
200	Sampled-data Hâ^ž filtering of Takagi–Sugeno fuzzy systems with interval time-varying delays. Journal of the Franklin Institute, 2014, 351, 2515-2542.	1.9	51
201	Recursive Filtering of Distributed Cyber-Physical Systems With Attack Detection. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 6466-6476.	5.9	51
202	DeepBalance: Deep-Learning and Fuzzy Oversampling for Vulnerability Detection. IEEE Transactions on Fuzzy Systems, $2019, 1-1$.	6.5	50
203	Cloud-Based Time-Varying Formation Predictive Control of Multi-Agent Systems With Random Communication Constraints and Quantized Signals. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1282-1286.	2.2	49
204	Moving horizon estimation meets multi-sensor information fusion: Development, opportunities and challenges. Information Fusion, 2020, 60, 1-10.	11.7	48
205	On Computing the Maximum Time-Delay Bound for Stability of Linear Neutral Systems. IEEE Transactions on Automatic Control, 2004, 49, 2281-2286.	3.6	47
206	New stability criterion using a matrixâ€based quadratic convex approach and some novel integral inequalities. IET Control Theory and Applications, 2014, 8, 1054-1061.	1.2	47
207	An overview of neuronal state estimation of neural networks with time-varying delays. Information Sciences, 2019, 478, 83-99.	4.0	47
208	An Explicit Estimate for the Upper Bound of the Settling Time in Fixed-Time Leader-Following Consensus of High-Order Multivariable Multiagent Systems. IEEE Transactions on Industrial Electronics, 2019, 66, 6250-6259.	5.2	47
209	A Scalable Algorithm for Event-Triggered State Estimation With Unknown Parameters and Switching Topologies Over Sensor Networks. IEEE Transactions on Cybernetics, 2020, 50, 4087-4097.	6.2	47
210	Secure impulsive synchronization in Lipschitz-type multi-agent systems subject to deception attacks. IEEE/CAA Journal of Automatica Sinica, 2020, 7, 1326-1334.	8.5	47
211	Resilient Tracking Control of Networked Control Systems Under Cyber Attacks. IEEE Transactions on Cybernetics, 2021, 51, 2107-2119.	6.2	47
212	Modelling and controller design for discrete-time networked control systems with limited channels and data drift. Information Sciences, 2014, 269, 332-348.	4.0	46
213	Event-Based Networked Islanding Detection for Distributed Solar PV Generation Systems. IEEE Transactions on Industrial Informatics, 2017, 13, 322-329.	7.2	46
214	Synchronization of Multiple Reaction–Diffusion Neural Networks With Heterogeneous and Unbounded Time-Varying Delays. IEEE Transactions on Cybernetics, 2019, 49, 2980-2991.	6.2	46
215	A Recursive Approach to Quantized \${H_{infty}}\$ State Estimation for Genetic Regulatory Networks Under Stochastic Communication Protocols. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 2840-2852.	7.2	46
216	Probability-Guaranteed Envelope-Constrained Filtering for Nonlinear Systems Subject to Measurement Outliers. IEEE Transactions on Automatic Control, 2021, 66, 3274-3281.	3.6	46

#	Article	IF	CITATIONS
217	False Data Injection Attacks Against Partial Sensor Measurements of Networked Control Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 149-153.	2.2	46
218	Fixed-time synchronization for coupled delayed neural networks with discontinuous or continuous activations. Neurocomputing, 2018, 314, 143-153.	3.5	45
219	Delay-dependent <i>H</i> _{â^ž} control of linear discrete-time systems with an interval-like time-varying delay. International Journal of Systems Science, 2008, 39, 427-436.	3.7	44
220	Quadratic estimation for discrete time-varying non-Gaussian systems with multiplicative noises and quantization effects. Automatica, 2020, 113, 108714.	3.0	44
221	Distributed Maximum Correntropy Filtering for Stochastic Nonlinear Systems Under Deception Attacks. IEEE Transactions on Cybernetics, 2022, 52, 3733-3744.	6.2	43
222	Less conservative delay-dependent stability criteria for linear systems with interval time-varying delays. International Journal of Systems Science, 2012, 43, 894-902.	3.7	41
223	Model-Free Predictive \$H_{infty}\$ Control for Grid-Connected Solar Power Generation Systems. IEEE Transactions on Control Systems Technology, 2014, 22, 2039-2047.	3.2	41
224	New results for delay-dependent stability of linear systems with time-varying delay. International Journal of Systems Science, 2002, 33, 213-228.	3.7	40
225	Investigating the effects of time-delays on stochastic stability and designing l1-gain controllers for positive discrete-time Markov jump linear systems with time-delay. Information Sciences, 2016, 355-356, 265-281.	4.0	40
226	A Novel Finite-Sum Inequality-Based Method for Robust \$H_infty\$ Control of Uncertain Discrete-Time Takagi–Sugeno Fuzzy Systems With Interval-Like Time-Varying Delays. IEEE Transactions on Cybernetics, 2018, 48, 2569-2582.	6.2	40
227	Fixed-time pinning-controlled synchronization for coupled delayed neural networks with discontinuous activations. Neural Networks, 2019, 116, 139-149.	3.3	40
228	Moving horizon estimation with multirate measurements and correlated noises. International Journal of Robust and Nonlinear Control, 2020, 30, 7429-7445.	2.1	40
229	Cooperative and Competitive Multi-Agent Systems: From Optimization to Games. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 763-783.	8.5	40
230	On stabilization for systems with two additive time-varying input delays arising from networked control systems. Journal of the Franklin Institute, 2012, 349, 2033-2046.	1.9	39
231	On asynchronous event-triggered control of decentralized networked systems. Information Sciences, 2018, 425, 127-139.	4.0	38
232	Integral-Type Sliding-Mode Control for a Class of Mechatronic Systems With Gain Adaptation. IEEE Transactions on Industrial Informatics, 2020, 16, 5357-5368.	7.2	38
233	Finite-Time Consensus Tracking for Incommensurate Fractional-Order Nonlinear Multiagent Systems With Directed Switching Topologies. IEEE Transactions on Cybernetics, 2022, 52, 65-76.	6.2	38
234	Synchronization Control for Discrete-Time-Delayed Dynamical Networks With Switching Topology Under Actuator Saturations. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 2040-2053.	7.2	38

#	Article	IF	Citations
235	Distributed Secondary Control of AC Microgrids With External Disturbances and Directed Communication Topologies: A Full-Order Sliding-Mode Approach. IEEE/CAA Journal of Automatica Sinica, 2021, 8, 554-564.	8.5	38
236	Robust absolute stability criteria for uncertain Lur'e systems of neutral type. International Journal of Robust and Nonlinear Control, 2008, 18, 278-295.	2.1	37
237	Scalable and Resilient Platooning Control of Cooperative Automated Vehicles. IEEE Transactions on Vehicular Technology, 2022, 71, 3595-3608.	3.9	37
238	Cooperative Model Predictive Control for Distributed Photovoltaic Power Generation Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4, 414-420.	3.7	36
239	Fixed-Time Bipartite Consensus Tracking of Fractional-Order Multi-Agent Systems With a Dynamic Leader. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2054-2058.	2.2	36
240	An Ellipsoidal Set-Membership Approach to Distributed Joint State and Sensor Fault Estimation of Autonomous Ground Vehicles. IEEE/CAA Journal of Automatica Sinica, 2021, 8, 1107-1118.	8.5	36
241	Distributed eventâ€triggered networked setâ€membership filtering with partial information transmission. IET Control Theory and Applications, 2017, 11, 155-163.	1.2	35
242	Robust event-triggered \$\${varvec{H}}_{{varvec{infty}}}\$\$ controller design for vehicle active suspension systems. Nonlinear Dynamics, 2018, 94, 627-638.	2.7	35
243	Energy-to-Peak State Estimation for Static Neural Networks With Interval Time-Varying Delays. IEEE Transactions on Cybernetics, 2018, 48, 2823-2835.	6.2	35
244	Discrete predictor-based event-triggered control of networked control systems. Automatica, 2019, 107, 281-288.	3.0	35
245	Event-Triggered Dynamic Positioning for Mass-Switched Unmanned Marine Vehicles in Network Environments. IEEE Transactions on Cybernetics, 2022, 52, 3159-3171.	6.2	35
246	Distributed <i>H</i> _{â^ž} filtering over sensor networks with heterogeneous Markovian coupling intercommunication delays. IET Control Theory and Applications, 2015, 9, 82-90.	1.2	34
247	A Cooperative Control Framework for a Collective Decision on Movement Behaviors of Particles. IEEE Transactions on Evolutionary Computation, 2016, 20, 859-873.	7.5	34
248	Fixed-Time Cooperative Control of Multi-Agent Systems. , 2019, , .		34
249	Cooperative Target Enclosing of Ring-Networked Underactuated Autonomous Surface Vehicles Based on Data-Driven Fuzzy Predictors and Extended State Observers. IEEE Transactions on Fuzzy Systems, 2022, 30, 2515-2528.	6.5	34
250	Input-to-State Stabilization of Delayed Differential Systems With Exogenous Disturbances: The Event-Triggered Case. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 1099-1109.	5 . 9	33
251	Dynamic event-triggered scheduling and control for vehicle active suspension over controller area network. Mechanical Systems and Signal Processing, 2021, 152, 107481.	4.4	33
252	A Scalable Adaptive Approach to Multi-Vehicle Formation Control with Obstacle Avoidance. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 990-1004.	8.5	33

#	Article	IF	CITATIONS
253	Stability analysis and Hâ^ž filtering for delay differential systems of neutral type. IET Control Theory and Applications, 2007, 1, 749-755.	1.2	32
254	Delay-dependent $\mathrm{H}\hat{\mathrm{a}}\hat{\mathrm{z}}$ filter design for linear systems with interval time-varying delay. IET Control Theory and Applications, 2007, 1 , $1131\text{-}1140$.	1.2	32
255	A new finite sum inequality approach to delay-dependentHâ^ž control of discrete-time systems with time-varying delay. International Journal of Robust and Nonlinear Control, 2008, 18, 630-647.	2.1	32
256	Multi-Agent System-Based Event-Triggered Hybrid Control Scheme for Energy Internet. IEEE Access, 2017, 5, 3263-3272.	2.6	32
257	Input-to-State Stabilization in Probability for Nonlinear Stochastic Systems Under Quantization Effects and Communication Protocols. IEEE Transactions on Cybernetics, 2019, 49, 3242-3254.	6.2	32
258	Distributed Optimization of Multiagent Systems With Preserved Network Connectivity. IEEE Transactions on Cybernetics, 2019, 49, 3980-3990.	6.2	32
259	Delay-Variation-Dependent Criteria on Extended Dissipativity for Discrete-Time Neural Networks With Time-Varying Delay. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 1578-1587.	7.2	32
260	Impulsive control of time-delay systems using delayed impulse and its application to impulsive master–slave synchronization. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 6375-6380.	0.9	31
261	Resource-Efficient Platooning Control of Connected Automated Vehicles Over VANETs. IEEE Transactions on Intelligent Vehicles, 2022, 7, 579-589.	9.4	31
262	A delay system method to design of event-triggered control of networked control systems. , 2011, , .		30
263	Delayed non-fragile Hâ^ž control for offshore steel jacket platforms. JVC/Journal of Vibration and Control, 2015, 21, 959-974.	1.5	30
264	Mobile Robot Networks for Environmental Monitoring: A Cooperative Receding Horizon Temporal Logic Control Approach. IEEE Transactions on Cybernetics, 2019, 49, 698-711.	6.2	30
265	Network-Based Line-of-Sight Path Tracking of Underactuated Unmanned Surface Vehicles With Experiment Results. IEEE Transactions on Cybernetics, 2022, 52, 10937-10947.	6.2	30
266	Recursive Filtering for Time-Varying Systems with Random Access Protocol. IEEE Transactions on Automatic Control, 2018, , 1-1.	3.6	29
267	On Designing Distributed Prescribed Finite-Time Observers for Strict-Feedback Nonlinear Systems. IEEE Transactions on Cybernetics, 2021, 51, 4695-4706.	6.2	29
268	A Delay Decomposition Approach to Hâ^ž Control of Networked Control Systems. European Journal of Control, 2009, 15, 523-533.	1.6	28
269	Observer-based <i>H</i> _{â^žâ€‰} output tracking control for networked control systems. International Journal of Robust and Nonlinear Control, 2014, 24, 2741-2760.	2.1	28
270	Robust non-fragile sampled-data control for offshore steel jacket platforms. Nonlinear Dynamics, 2016, 83, 1939-1954.	2.7	28

#	Article	IF	CITATIONS
271	Consensus Control of Linear Multiagent Systems Under Actuator Imperfection: When Saturation Meets Fault. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 2651-2663.	5.9	28
272	On robust stability of time-delay systems with norm-bounded uncertainty. , 2001, , .		27
273	Stability analysis for a partial element equivalent circuit (PEEC) model of neutral type. International Journal of Circuit Theory and Applications, 2005, 33, 321-332.	1.3	27
274	Distance- and Velocity-Based Collision Avoidance for Time-Varying Formation Control of Second-Order Multi-Agent Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1253-1257.	2.2	27
275	Event-Triggered Cooperative Path Following of Autonomous Surface Vehicles Over Wireless Network With Experiment Results. IEEE Transactions on Industrial Electronics, 2022, 69, 11479-11489.	5.2	27
276	Fixed-Time Resilient Edge-Triggered Estimation and Control of Surface Vehicles for Cooperative Target Tracking Under Attacks. IEEE Transactions on Intelligent Vehicles, 2023, 8, 547-556.	9.4	27
277	An improved estimate of the robust stability bound of time-delay systems with norm-bounded uncertainty. IEEE Transactions on Automatic Control, 2003, 48, 1629-1634.	3.6	26
278	A less conservative method for designing <i>H</i> _{â^ž} filters for linear timeâ€delay systems. International Journal of Robust and Nonlinear Control, 2009, 19, 1376-1396.	2.1	26
279	A finite-time particle swarm optimization algorithm for odor source localization. Information Sciences, 2014, 277, 111-140.	4.0	26
280	Distributed entropy filtering subject to DoS attacks in nonâ€Gauss environments. International Journal of Robust and Nonlinear Control, 2020, 30, 1240-1257.	2.1	26
281	Distributed Resilient Estimator Design for Positive Systems Under Topological Attacks. IEEE Transactions on Cybernetics, 2021, 51, 3676-3686.	6.2	26
282	Cluster Consensus of Multiagent Systems With Weighted Antagonistic Interactions. IEEE Transactions on Cybernetics, 2021, 51, 5609-5618.	6.2	26
283	The construction of augmented Lyapunov-Krasovskii functionals and the estimation of their derivatives in stability analysis of time-delay systems: a survey. International Journal of Systems Science, 2022, 53, 2480-2495.	3.7	26
284	Cooperative Target Tracking of Multiple Autonomous Surface Vehicles Under Switching Interaction Topologies. IEEE/CAA Journal of Automatica Sinica, 2023, 10, 673-684.	8.5	26
285	A Delay Decomposition Approach to Stability of Linear Neutral Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 2607-2612.	0.4	25
286	Quantitative analysis and synthesis for networked control systems with nonâ€uniformly distributed packet dropouts and interval timeâ€varying sampling periods. International Journal of Robust and Nonlinear Control, 2015, 25, 282-300.	2.1	25
287	Communication and Control for Networked Complex Systems. , 2015, , .		25
288	Code analysis for intelligent cyber systems: A data-driven approach. Information Sciences, 2020, 524, 46-58.	4.0	25

#	Article	IF	CITATIONS
289	Delay-dependent conditions for robust absolute stability of uncertain time-delay systems., 0,,.		24
290	Event-based input and state estimation for linear discrete time-varying systems. International Journal of Control, 2018, 91, 101-113.	1.2	24
291	On Consensus of Second-Order Multiagent Systems With Actuator Saturations: A Generalized-Nyquist-Criterion-Based Approach. IEEE Transactions on Cybernetics, 2022, 52, 9048-9058.	6.2	24
292	Daedalus: Breaking Nonmaximum Suppression in Object Detection via Adversarial Examples. IEEE Transactions on Cybernetics, 2022, 52, 7427-7440.	6.2	24
293	Predictor-Based Neural Dynamic Surface Control for Bipartite Tracking of a Class of Nonlinear Multiagent Systems. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 1791-1802.	7.2	24
294	Observer-based fuzzy control design with adaptation to delay parameter for time-delay systems. Fuzzy Sets and Systems, 2005, 152, 637-649.	1.6	23
295	Less conservative stability criteria for linear systems with interval timeâ€varying delays. International Journal of Robust and Nonlinear Control, 2015, 25, 475-485.	2.1	23
296	Distributed Quasiconsensus Control for Stochastic Multiagent Systems Under Round-Robin Protocol and Uniform Quantization. IEEE Transactions on Cybernetics, 2022, 52, 6721-6732.	6.2	23
297	On guaranteed cost fuzzy control for nonlinear systems with interval time-varying delay. IET Control Theory and Applications, 2007, 1, 1700-1710.	1.2	22
298	Stability Analysis of Second-Order Sliding Mode Control Systems With Input-Delay Using Poincaré Map. IEEE Transactions on Automatic Control, 2013, 58, 2410-2415.	3.6	22
299	Modelling and observerâ€based <i>H</i> _∞ controller design for networked control systems. IET Control Theory and Applications, 2014, 8, 1478-1486.	1.2	22
300	Optimal tracking control with feedforward compensation for offshore steel jacket platforms with active mass damper mechanisms. JVC/Journal of Vibration and Control, 2016, 22, 695-709.	1.5	22
301	Energy-to-Peak State Estimation With Intermittent Measurement Outliers: The Single-Output Case. IEEE Transactions on Cybernetics, 2022, 52, 11504-11515.	6.2	22
302	H \hat{a}^* control of LPV systems with randomly multi-step sensor delays. International Journal of Control, Automation and Systems, 2014, 12, 1207-1215.	1.6	21
303	A novel islanding fault detection for distributed generation systems. International Journal of Robust and Nonlinear Control, 2014, 24, 1431-1445.	2.1	21
304	Neurodynamics-based Model Predictive Control of Continuous-time Under-actuated Mechatronic Systems. IEEE/ASME Transactions on Mechatronics, 2020, , 1-1.	3.7	21
305	Sampled-Data Consensus of Linear Time-Varying Multiagent Networks With Time-Varying Topologies. IEEE Transactions on Cybernetics, 2022, 52, 128-137.	6.2	21
306	A survey on modelling, control and challenges of stratospheric airships. Control Engineering Practice, 2022, 119, 104979.	3.2	21

#	Article	IF	CITATIONS
307	A New Stability Criterion for a Partial Element Equivalent Circuit Model of Neutral Type. IEEE Transactions on Circuits and Systems II: Express Briefs, 2009, 56, 798-802.	2.2	20
308	Distributed Set-Membership Fusion Filtering for Nonlinear 2-D Systems Over Sensor Networks: An Encoding–Decoding Scheme. IEEE Transactions on Cybernetics, 2023, 53, 416-427.	6.2	20
309	Dynamic Event-Triggered Platooning Control of Automated Vehicles Under Random Communication Topologies and Various Spacing Policies. IEEE Transactions on Cybernetics, 2022, 52, 11477-11490.	6.2	20
310	Coordinated Planar Path-Following Control for Multiple Nonholonomic Wheeled Mobile Robots. IEEE Transactions on Cybernetics, 2022, 52, 9404-9413.	6.2	20
311	Discrete-Time Analogs for a Class of Continuous-Time Recurrent Neural Networks. IEEE Transactions on Neural Networks, 2007, 18, 1343-1355.	4.8	19
312	Practical Fixed-Time Bipartite Consensus of Nonlinear Incommensurate Fractional-Order Multiagent Systems in Directed Signed Networks. SIAM Journal on Control and Optimization, 2020, 58, 3322-3341.	1.1	19
313	Multivehicle Task Assignment Based on Collaborative Neurodynamic Optimization With Discrete Hopfield Networks. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 5274-5286.	7.2	19
314	A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays. , 0 , , .		18
315	Pure delayed non-fragile control for offshore steel jacket platforms subject to non-linear self-excited wave force. Nonlinear Dynamics, 2014, 77, 491-502.	2.7	17
316	On designing networkâ€based <i>H</i> _{â^žâ€‰} controllers for stochastic systems. Internation Journal of Robust and Nonlinear Control, 2015, 25, 52-71.	al 2.1	17
317	Output feedback stabilization of networked control systems with a logic zero-order-hold. Information Sciences, 2017, 381, 78-91.	4.0	17
318	\$H_{infty}\$ Synchronization of Networked Master–Slave Oscillators With Delayed Position Data: The Positive Effects of Network-Induced Delays. IEEE Transactions on Cybernetics, 2019, 49, 4090-4102.	6.2	17
319	Sampled-position states based consensus of networked multi-agent systems with second-order dynamics subject to communication delays. Information Sciences, 2020, 509, 36-46.	4.0	17
320	Received Signal Strength Indicator-Based Indoor Localization Using Distributed Set-Membership Filtering. IEEE Transactions on Cybernetics, 2022, 52, 727-737.	6.2	17
321	On Stability of Recurrent Neural Networks—An Approach From Volterra Integro-Differential Equations. IEEE Transactions on Neural Networks, 2006, 17, 264-267.	4.8	16
322	NETWORKâ€INDUCED DELAYâ€DEPENDENT <i>H</i> _{â^ž} CONTROLLER DESIGN FOR A CLASS OF NETWORKED CONTROL SYSTEMS. Asian Journal of Control, 2006, 8, 97-106.	1.9	16
323	Stability of linear systems with interval time-varying delays arising from networked control systems. , 2010, , .		16
324	A separation method of transmission delays and data packet dropouts from a lumped input delay in the stability problem of networked control systems. International Journal of Robust and Nonlinear Control, 2017, 27, 1963-1973.	2.1	16

#	Article	IF	CITATIONS
325	H _{â^ž} Cluster Formation Control of Networked Multiagent Systems With Stochastic Sampling. IEEE Transactions on Cybernetics, 2021, 51, 5761-5772.	6.2	16
326	Communication-Constrained Active Suspension Control for Networked In-Wheel Motor-Driven Electric Vehicles With Dynamic Dampers. IEEE Transactions on Intelligent Vehicles, 2022, 7, 590-602.	9.4	16
327	Fault Detection Filter Design for a Class of Networked Control Systems. , 2006, , .		15
328	A NEW INTEGRAL INEQUALITY APPROACH TO DELAYâ€DEPENDENT ROBUST <i>H</i> _{â^ž} CONTROL. Asian Journal of Control, 2006, 8, 153-160.	1.9	15
329	Distributed guaranteed two-target tracking over heterogeneous sensor networks under bounded noises and adversarial attacks. Information Sciences, 2020, 535, 187-203.	4.0	15
330	Proportional–Integral Observer Design for Uncertain Time-Delay Systems Subject to Deception Attacks: An Outlier-Resistant Approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 5152-5164.	5.9	15
331	Tracking Control Under Round-Robin Scheduling: Handling Impulsive Transmission Outliers. IEEE Transactions on Cybernetics, 2023, 53, 2288-2300.	6.2	15
332	Master–slave synchronization criteria for chaotic hindmarsh–rose neurons using linear feedback control. Complexity, 2016, 21, 319-327.	0.9	14
333	Discrete-time filter proportional–integral–derivative controller design for linear time-invariant systems. Automatica, 2020, 116, 108918.	3.0	14
334	Resilient Distributed Event-Triggered Control of Vehicle Platooning Under DoS Attacks. IFAC-PapersOnLine, 2020, 53, 1807-1812.	0.5	14
335	Master–slave synchronization criteria for horizontal platform systems using time delay feedback control. Journal of Sound and Vibration, 2011, 330, 2419-2436.	2.1	13
336	A Krein space-based approach to event-triggered <mml:math altimg="si5.svg" display="inline" id="d1e264" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>a^z<td>:30 :mi><td>l:mrow> </td></td></mml:mi></mml:mrow></mml:msub></mml:math>	:30 :mi> <td>l:mrow> </td>	l:mrow>
337	Distributed State Estimation Over Wireless Sensor Networks With Energy Harvesting Sensors. IEEE Transactions on Cybernetics, 2023, 53, 3311-3324.	6.2	13
338	Recoil control of deepwater drilling riser systems via optimal control with feedforward mechanisms. Ocean Engineering, 2022, 257, 111690.	1.9	13
339	A Probability Particle Swarm Optimizer with Information-Sharing Mechanism for Odor Source Localization. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 9440-9445.	0.4	12
340	Recursive Integer Cosine Transform for HEVC and Future Video Coding Standards. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27, 326-336.	5.6	12
341	Guest Editorial Special Issue on New Trends in Energy Internet: Artificial Intelligence-Based Control, Network Security, and Management. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 1551-1553.	5.9	12
342	Recursive State Estimation for Networked Multirate Multisensor Systems With Distributed Time-Delays Under Round-Robin Protocol. IEEE Transactions on Cybernetics, 2022, 52, 4136-4146.	6.2	12

#	Article	IF	Citations
343	Cyber Code Intelligence for Android Malware Detection. IEEE Transactions on Cybernetics, 2023, 53, 617-627.	6.2	12
344	An improved stability criterion of networked control systems. , 2010, , .		11
345	Investigating the positive effects of packet dropouts on network-based <mml:math altimg="si0006.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mo>â^ž<td>ml:mo><td>nml:mrow> <</td></td></mml:mo></mml:mrow></mml:msub></mml:math>	ml:mo> <td>nml:mrow> <</td>	nml:mrow> <
346	Distributed H _{â^ž} -Consensus Filtering for Attitude Tracking Using Ground-Based Radars. IEEE Transactions on Cybernetics, 2021, 51, 3767-3778.	6.2	11
347	A novel setâ€membership control strategy for discreteâ€time linear timeâ€varying systems. IET Control Theory and Applications, 2019, 13, 3087-3095.	1.2	11
348	Predictor-based control of time-delay systems: a survey. International Journal of Systems Science, 2022, 53, 2496-2534.	3.7	11
349	Data-Driven Adaptive Control: An Incremental Triangular Dynamic Linearization Approach. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 4949-4953.	2.2	11
350	Delay-dependent robust stabilization for uncertain constrained systems with pointwise and distributed time-varying delays., 0,,.		10
351	A DISCRETIZED LYAPUNOV FUNCTIONAL APPROACH TO STABILITY OF LINEAR DELAY-DIFFERENTIAL SYSTEMS OF NEUTRAL TYPE. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 179-184.	0.4	10
352	A delay decomposition approach to stability and H <inf>∞</inf> control of linear time-delay systems — part I: Stability. , 2008, , .		10
353	EFFECTS OF COUPLING DELAYS ON SYNCHRONIZATION IN LUR'E COMPLEX DYNAMICAL NETWORKS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 3565-3584.	0.7	10
354	Cooperative control of a multi-robot system for odor source localization., 2011,,.		10
355	Quasi-Synchronization of Heterogeneous LC Circuits in Grid-Connected Systems With Intentionally Time-Varying Lumped Delays. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 2148-2157.	3.5	10
356	Recursive Secure Filtering Over Gilbert-Elliott Channels in Sensor Networks: The Distributed Case. IEEE Transactions on Signal and Information Processing Over Networks, 2021, 7, 75-86.	1.6	10
357	A Divisive Hierarchical Clustering Approach to Hyperspectral Band Selection. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	2.4	10
358	Robust H â^ž controller synthesis for uncertain systems with multiple time-varying delays: An LMI approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1999, 32, 1284-1289.	0.4	9
359	A brief survey of recent results on control and filtering for networked systems. , 2016, , .		9
360	Simultaneous stabilisation for distributed networked multimode control systems with multiple packet dropouts. IET Control Theory and Applications, 2016, 10, 625-636.	1.2	9

#	Article	IF	CITATIONS
361	Low-Complexity Order-64 Integer Cosine Transform Design and its Application in HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28, 2407-2412.	5.6	9
362	Reliable fusion estimation over sensor networks with outliers and energy constraints. International Journal of Robust and Nonlinear Control, 2019, 29, 5913-5929.	2.1	9
363	Active Control of Offshore Steel Jacket Platforms. , 2019, , .		9
364	Position-Based Synchronization of Networked Harmonic Oscillators With Asynchronous Sampling and Communication Delays. IEEE Transactions on Cybernetics, 2021, 51, 4337-4347.	6.2	9
365	Receding Horizon Synchronization of Delayed Neural Networks Using a Novel Inequality on Quadratic Polynomial Functions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 6085-6095.	5.9	9
366	Observer-based state feedback <mml:math altimg="si3.svg" display="inline" id="d1e1528" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>a^ž<td>:n3i1<td>l:ønrow></td></td></mml:mi></mml:mrow></mml:msub></mml:math>	:n 3i1 <td>l:ønrow></td>	l:ønrow>
367	115, 46-60. Leader selection in networks under switching topologies with antagonistic interactions. Automatica, 2022, 142, 110334.	3.0	9
368	A distributed coordination control scheme for odor source localization. , 2010, , .		8
369	Decision-making in a multi-robot system for odor source localization. , 2011, , .		8
370	H<inf>∞</inf> control design for network-based T-S fuzzy systems with asynchronous constraints on membership functions. , $2011, \dots$		8
371	MASTER-SLAVE SYNCHRONIZATION OF NONAUTONOMOUS CHAOTIC SYSTEMS AND ITS APPLICATION TO ROTATING PENDULUMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250147.	0.7	8
372	Quadtree-based non-local Kuan's filtering in video compression. Journal of Visual Communication and Image Representation, 2014, 25, 1044-1055.	1.7	8
373	On designing overlapping group modeâ€dependent <i>H</i> _{<i>â^ž</i>} controllers of discreteâ€time Markovian jump linear systems with incomplete mode transition probabilities. International Journal of Robust and Nonlinear Control, 2015, 25, 3641-3660.	2.1	8
374	Set-Membership Global Estimation of Networked Systems. IEEE Transactions on Cybernetics, 2022, 52, 1454-1464.	6.2	8
375	Reachable Set Synthesis of Markov Jump Systems With Time-Varying Delays and Mismatched Modes. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2186-2190.	2.2	8
376	Recoil attenuation for deepwater drilling riser systems via delayed <mml:math altimg="si372.svg" display="inline" id="d1e2525" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>a^žcontrol. ISA Transactions, 2023, 133, 248-261.</mml:mi></mml:mrow></mml:msub></mml:math>	m3:1 mi> <td>າ<mark>ຶ</mark>kl:mrow><</td>	າ <mark>ຶ</mark> kl:mrow><
377	Optimal guaranteed cost control of singular systems with delayed state and parameter uncertainties. , 2004, , .		7
378	MASTER–SLAVE SYNCHRONIZATION OF LUR'E SYSTEMS WITH GENERAL SECTOR-BOUNDED NONLINEARITIES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 517-529.	0.7	7

#	Article	IF	CITATIONS
379	Output-based event-triggered $\$*x210B;\$*x221E;$ control for sampled-data control systems with nonuniform sampling. , 2013, , .		7
380	Decentralized event-triggered control for sampled-data systems with asynchronous sampling. , 2013, , .		7
381	High performance loop filter for HEVC. , 2015, , .		7
382	Dynamic output feedback control for seismic-excited buildings. Journal of Sound and Vibration, 2017, 411, 88-107.	2.1	7
383	Simultaneous Hâ^ž stabilization for large-scale systems within distributed wireless networked control framework over fading channels. Journal of the Franklin Institute, 2018, 355, 3010-3030.	1.9	7
384	Local Stabilization for Multiple Input-Delay Systems Subject to Saturating Actuators: The Continuous-Time Case. IEEE Transactions on Automatic Control, 2022, 67, 3090-3097.	3.6	7
385	Event-Triggered Cardinality-Constrained Cooling and Electrical Load Dispatch Based on Collaborative Neurodynamic Optimization. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 5464-5475.	7.2	7
386	Communication Architecture Design for Real-Time Networked Control Systems., 2006,,.		6
387	Stability analysis of time-delayed single-input sliding mode control systems. , 2008, , .		6
388	Optimal Two-Sided Diagonal Scaling for Filter Bank Frames. IEEE Transactions on Signal Processing, 2011, 59, 5830-5841.	3.2	6
389	A finite-time particle swarm optimization algorithm. , 2012, , .		6
390	Event-triggered mixed H<inf>& $\#x221E$;</inf> and passive control of linear systems via dynamic output feedback., 2013,,.		6
391	Event-triggered quantized-data feedback control for linear systems. , 2013, , .		6
392	Event-based dynamic output feedback control for networked control systems., 2013,,.		6
393	Distribution level SiC FACTS devices with reduced DC bus capacitance for improved load capability and solar integration. , 2014, , .		6
394	Distributed fixed-time cooperative tracking control for multi-robot systems., 2017,,.		6
395	On joint design of intentionally introduced delay and controller gain for stabilization of second-order oscillatory systems. Automatica, 2020, 116, 108915.	3.0	6
396	Designing Discrete Predictor-Based Controllers for Networked Control Systems with Time-varying Delays: Application to A Visual Servo Inverted Pendulum System. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 1763-1777.	8.5	6

#	Article	IF	CITATIONS
397	New spectra of responses and control force for design of equivalent-input-disturbance-based active structural control of base-isolated buildings. Journal of Sound and Vibration, 2021, 507, 116160.	2.1	6
398	Settling Time Estimation in Synchronization of Impulsive Networks With Switching Topologies. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 2386-2397.	5.9	6
399	Networked Active Fault-Tolerant Predictive Control for Systems With Random Communication Constraints and Actuator/Sensor Faults. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2166-2170.	2.2	6
400	Cooperative Control of Multirobot Systems Subject to Control Gain Uncertainty. IEEE Transactions on Industrial Informatics, 2023, 19, 5367-5376.	7.2	6
401	Receding-Horizon Trajectory Planning for Under-Actuated Autonomous Vehicles Based on Collaborative Neurodynamic Optimization. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 1909-1923.	8.5	6
402	Watermark-Based Proactive Defense Strategy Design for Cyber-Physical Systems With Unknown-but-Bounded Noises. IEEE Transactions on Automatic Control, 2023, 68, 3300-3315.	3.6	6
403	Discretized Lyapunov functional for linear uncertain systems with time-varying delay. , 2000, , .		5
404	Optimal guaranteed cost control of linear uncertain systems with input constraints. , 0, , .		5
405	Performance optimization for networked control systems with limited channels and data drift. , 2010, , .		5
406	Robust sliding mode H<inf>& $\#x221E$;</inf> control using time-varying delayed states for offshore steel jacket platforms., 2013,,.		5
407	Synchronization of heterogeneous dynamical networks via distributed impulsive control. , 2014, , .		5
408	Strong $\hat{I}^3-\hat{I}^3$ Hâ \hat{I}^3 stabilization for networked control systems under denial of service attacks. Journal of the Franklin Institute, 2019, 356, 2723-2741.	1.9	5
409	Decision and Event-Based Fixed-Time Consensus Control for Electromagnetic Source Localization. IEEE Transactions on Cybernetics, 2022, 52, 2186-2199.	6.2	5
410	Order-Preserved Preset-Time Cooperative Control: A Monotone System-Based Approach. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 1603-1611.	8.5	5
411	Stability robustness analysis of discrete linear systems. International Journal of Systems Science, 1991, 22, 165-172.	3.7	4
412	On stability for a class of neutral delay-differential systems. , 2001, , .		4
413	REDUCING CONTROL LATENCY AND JITTER IN REAL-TIME CONTROL. Asian Journal of Control, 2008, 8, 72-75.	1.9	4
414	Time-delay effect on equivalent control based single-input sliding mode control systems. , 2008, , .		4

#	Article	IF	CITATIONS
415	Hierarchical fuzzy logic control for multiphase traffic intersection using evolutionary algorithms., 2009,,.		4
416	A novel finite-sum inequality for stability of discrete-time linear systems with interval-like time-varying delays. , 2010, , .		4
417	Observer-based output tracking control for a class of linear networked control systems. , 2011, , .		4
418	A novel self-triggered sampling scheme in networked control systems. , 2012, , .		4
419	Event-triggered control for networked systems based on network dynamics. , 2013, , .		4
420	A brief survey of recent advances in consensus of sampled-data multi-agent systems. , 2016, , .		4
421	Guest Editorial Special Section on New Trends in Control and Filtering of Networked Systems. IEEE Transactions on Industrial Informatics, 2016, 12, 1736-1739.	7.2	4
422	Special focus on advanced techniques for event-triggered control and estimation. Science China Information Sciences, 2020, 63, 1.	2.7	4
423	Dynamic Event-Triggered Vehicle Platooning Control: Trade-off Between Communication Efficiency and Platoon Performance., 2021,,.		4
424	Optimal Chiller Loading Based on Collaborative Neurodynamic Optimization. IEEE Transactions on Industrial Informatics, 2023, 19, 3057-3067.	7.2	4
425	Comments and Remarks on "On Improved Delay-Dependent Robust Control for Uncertain Time-Delay Systems. IEEE Transactions on Automatic Control, 2006, 51, 1726-1728.	3.6	3
426	Chattering analysis of time-delayed second-order sliding mode control systems using Poincar $\#x00E9;$ map. , $2010,$, .		3
427	A discrete event-triggered communication scheme for networked T-S fuzzy systems. , 2011, , .		3
428	Tracking control for network-based T-S fuzzy systems with asynchronous constraints. , 2012, , .		3
429	Event-triggered dissipative control of networked interconnected stochastic systems. , 2013, , .		3
430	Quantized set-membership filtering with communication constraints., 2013,,.		3
431	Network-based consensus of nonlinear multi-agent systems with Markovian switching topologies. , 2014, , .		3
432	Hierarchical distributed receding horizon control for a group of agents. , 2015, , .		3

#	Article	IF	CITATIONS
433	A survey of motion control for marine vehicles. , 2015, , .		3
434	Finite-Time Consensus Analysis under Directed Communication Topologies for Multi-Agent Systems * *This work was supported by the National Natural Science Foundation of China under Grants 61375104, and 61503108, the Natural Science Foundation of Zhejiang Province under Grant LY17F030022. IFAC-PapersOnLine, 2017, 50, 619-624.	0.5	3
435	Networked active vibration control of structural systems: A nonsmall input delay approach. JVC/Journal of Vibration and Control, 2018, 24, 5391-5400.	1.5	3
436	Distributed H <inf>\hat{a}*\hat{z}</inf> -Consensus Filtering for a Networked Time-Delay System with Switching Network Topology and Packet Dropouts. , 2018, , .		3
437	Detection of Cyber Attacks on Leader-Following Multi-Agent Systems. , 2019, , .		3
438	Active fault-tolerant predictive control of networked systems subject to actuator faults and random communication constraints. International Journal of Control, 2022, 95, 2357-2363.	1.2	3
439	Robust H â^ž Control and Filtering of Networked Control Systems. , 2008, , 121-151.		3
440	Synchronization of two coupled Hindmarsh-Rose neurons. Kybernetika, 0, , 784-799.	0.0	3
441	Data-Driven Edge Computing: A Fabric for Intelligent Building Energy Management Systems. IEEE Industrial Electronics Magazine, 2022, 16, 44-52.	2.3	3
442	Design Method of Tuned Mass Damper by Linear-Matrix-Inequality-Based Robust Control Theory for Seismic Excitation. Journal of Vibration and Acoustics, Transactions of the ASME, 2022, 144, .	1.0	3
443	Stability robustness analysis for observer-based uncertain continuous-time time-delay systems containing saturating actuators. , 0, , .		2
444	$\hat{\text{Hl}\pm}$ Control for Offshore Structures with Persistent Disturbances. , 2006, , .		2
445	Controller Design for Networked Fuzzy Systems. , 2006, , .		2
446	Packet dropout separation-based networked control systems quantitative synthesis., 2010,,.		2
447	Chaotic synchronization of labyrinth systems. , 2010, , .		2
448	A membership function deviation approach to network-based H <inf>&$\#x221E$;</inf> fuzzy output feedback control for Takagi-Sugeno fuzzy systems. , 2011, , .		2
449	One step prediction-based packet dropout compensation for networked control systems. , 2011, , .		2
450	Sampled-data stabilization for Takagi-Sugeno fuzzy systems using membership function deviations. , 2012, , .		2

#	Article	lF	Citations
451	Network-based static output feedback tracking control for fuzzy-model-based nonlinear systems., 2012,,.		2
452	Network-based static output feedback tracking control for a class of systems using the positive effects of network-induced delays. , 2012, , .		2
453	Modelling and dynamic output feedback controller design for networked control systems. , 2013, , .		2
454	Event-triggered output feedback control for Takagi-Sugeno fuzzy systems. , 2013, , .		2
455	Pinning synchronization of delayed dynamical networks via impulsive control. , 2014, , .		2
456	Network-based H <inf>∞</inf> control for offshore steel jacket platforms., 2014,,.		2
457	Network-based active control for offshore steel jacket platforms. , 2014, , .		2
458	Finite-time stability and stabilization for a class of nonlinear discrete-time descriptor switched systems with time-varying delay. , 2014, , .		2
459	Distributed H <inf>∞</inf> filtering of discrete-time linear systems over sensor networks with event-triggered communication., 2015, , .		2
460	Event-triggered distributed H<inf>& $\#x221E$;</inf> filtering for networked systems with switching topologies. , 2015, , .		2
461	On supervised learning of sliding observer. , 2017, , .		2
462	Integral Sliding Mode Hâ^ž Control. , 2019, , 49-69.		2
463	Network-Based Stabilization of Linear Systems via Static Output Feedback. Communications in Computer and Information Science, 2014, , 300-309.	0.4	2
464	Event-Triggered Control for Switched Systems in Network Environments. IFAC-PapersOnLine, 2020, 53, 2765-2770.	0.5	2
465	Design of robust output feedback controllers with variance and disc closed-loop pole constraints. , 0, , .		1
466	A delay-dependent stability criterion of neutral systems and its application to a partial element equivalent circuit model., 2004,,.		1
467	Stability of linear neutral systems with linear fractional norm-bounded uncertainty. , 0, , .		1
468	Robust Hâ^ž Nonâ€Fragile Controller Design for Uncertain Descriptor Systems with Timeâ€Varying Discrete and Distributed Delays. Asia-Pacific Journal of Chemical Engineering, 2005, 13, 341-350.	0.0	1

#	Article	IF	CITATIONS
469	ROBUST OUTPUT FEEDBACK CONTROLLER DESIGN WITH COVARIANCE AND DISC CLOSED-LOOP POLE CONSTRAINTS. Asian Journal of Control, 2005, 7, 337-343.	1.9	1
470	Effects of small time-delays on dynamic output feedback control of offshore steel jacket structures subject to wave-induced forces. , 2009 , , .		1
471	Synchronization criteria for Lur'e complex dynamical networks with coupling delays. , 2009, , .		1
472	Network-based non-fragile H <inf>∞</inf> filter design for linear systems. , 2010, , .		1
473	On tracking control for a class of network-based linear systems. , 2010, , .		1
474	Sliding mode control for offshore steel jacket platforms. , 2010, , .		1
475	Stability and control for systems with two additive time-varying input delays arising from networked control systems. , 2011, , .		1
476	Fault detection filter design for discrete-time networked control systems. , 2012, , .		1
477	Fuzzy sampled-data H <inf>∞</inf> filtering for systems with time-varying delays and variable sampling periods., 2012,,.		1
478	Distributed event-triggered H<inf>& $\#x221E$;</inf> filtering over sensor networks with coupling delays., 2013,,.		1
479	Event-triggered output feedback dissipative control for network-based systems. , 2013, , .		1
480	Network-based control for offshore steel jacket platform subject to wave-induced force., 2013,,.		1
481	Temporal layer adaptive loop filter for HEVC. , 2014, , .		1
482	Co-design of event-triggered scheme and distributed H <inf>∞</inf> filters for networked systems with sensor networks. , 2014, , .		1
483	Event-triggered distributed H filtering over sensor networks under round-robin scheduling. , 2015, , .		1
484	A new unidirectional coupling for global synchronization of two Hindmarsh-Rose neurons., 2015,,.		1
485	Fault detection filter and controller design for unmanned surface vehicles. , 2016, , .		1
486	PD-type H <inf>â^ž</inf> consensus control for discrete-time stochastic multi-agent systems. , 2017, , .		1

#	Article	IF	CITATIONS
487	Cyber-physical attacks detection in networked control systems with limited communication bandwidth. , $2017, \ldots$		1
488	Distributed control of networked large-scale systems based on a scheduling middleware. , 2017, , .		1
489	Extended Dissipativity Analysis of Delayed Memristive Neural Networks Based on A Parameter-Dependent Lyapunov Functional. , 2018, , .		1
490	Fixed-Time Stability and Stabilization. , 2019, , 17-44.		1
491	Fixed-Time Cooperative Control for First-Order Multi-Agent Systems. , 2019, , 45-58.		1
492	Distributed Secondary Control for Microgrids with Heterogeneous Battery Energy Storage Systems Under Switching Communication Topology. , 2019, , .		1
493	Special Issue on Event-Triggered Control and Filtering of Distributed Networked Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 3108-3111.	5.9	1
494	Dynamic Event-Triggered Fault-Tolerant Control of Vehicle Active Suspension Systems. , 2020, , .		1
495	Robust stability criteria for linear impulsive delay systems. International Journal of Robust and Nonlinear Control, 2021, 31, 5652-5664.	2.1	1
496	Codesign of Event-Triggered Communication Scheme and $\$\{H\}_{infty}\$ Controller for NCSs. , 2015, , 97-109.		1
497	Distributed Event-Triggered Secondary Control for Islanded Microgrids. Power Systems, 2022, , 49-72.	0.3	1
498	Longâ€horizon finiteâ€set model predictive control for gridâ€connected photovoltaic inverters. Optimal Control Applications and Methods, 2022, 43, 618-635.	1.3	1
499	On robust stability of time-delay systems with block-diagonal uncertainty. , 0, , .		1
500	Guest Editorial: Special Issue on resilient and secure approaches to control and estimation for cyber–physical systems. ISA Transactions, 2022, 127, 1-3.	3.1	1
501	IMPROVED ESTIMATE OF TIME-DELAY FOR STABILITY OF LINEAR SYSTEMS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 207-212.	0.4	О
502	On testing the stability of linear neutral systems: a DLF approach. , 0, , .		0
503	On robust stability of linear neutral systems with nonlinear parameter perturbations. , 2004, , .		0
504	Stability analysis of recurrent neural networks - a Volterra integro-differential equation approach. , 2004, , .		0

#	Article	IF	CITATIONS
505	STABILITY OF LINEAR NEUTRAL SYSTEMS WITH MIXED DELAY AND POLYTOPIC UNCERTAINTY. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 430-435.	0.4	0
506	Delay-dependent Guaranteed Cost Control for Neutral Systems with Sector-bounded Nonlinearity. , 0,		0
507	Robust absolute stability criteria for a class of uncertain Lur'e systems of neutral type., 2006, , .		O
508	An H _∞ control design approach to networked control systems., 2007,,.		0
509	A delay decomposition approach to stability and H <inf>∞</inf> control of linear time-delay systems — part II: H <inf>∞</inf> control. , 2008, , .		0
510	Time-delay effect on continuous approximation of sliding mode control. , 2010, , .		0
511	Stabilization of non-uniform sampling networked control systems. , 2011, , .		0
512	Robust Dissipative Control for Networked Control Systems with Multiple Packet Dropouts. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 78-83.	0.4	0
513	Stability and passivity of feedback interconnected systems in network environments. , 2012, , .		0
514	On shift variance bounds in multi-channel filter banks. , 2012, , .		0
515	A novel stability criterion for networked control systems using a new bounding technique. , 2012, , .		0
516	Model-free subspace-based control scheme for grid-connected voltage source inverters. , 2012, , .		0
517	Network-based output tracking control of Van der Pol's oscillators. , 2012, , .		0
518	Observer-based continuous-time networked control system design. , 2012, , .		0
519	Active packet dropouts-based networked control system performance optimization., 2012,,.		0
520	Output feedback stabilization of polytopic-type uncertain discrete systems with interval-like time-varying state and input delays. , 2012, , .		0
521	On delay-derivative-dependent sampled-data fuzzy control design for T-S model-based fuzzy systems with interval time-varying delay. , 2012, , .		0
522	Overlapping mode-dependent H <inf>∞</inf> filtering of discrete-time Markov jump linear systems., 2013,,.		0

#	Article	IF	CITATIONS
523	Distributed H <inf>∞</inf> filtering of sensor networks with/without asymmetric intercommunication delays., 2013,,.		O
524	Event-triggered H <inf>&$\#x221E$;</inf> filtering for networked systems based on network dynamics. , 2013, , .		O
525	Distributed fault detection for sensor networks with Markovian sensing topology. , 2013, , .		0
526	Control of sampled-data systems using a saturated quantizer. , 2014, , .		0
527	Impulsive synchronization of complex dynamical networks with distributed delays. , 2014, , .		O
528	Unbiased minimum-variance filtering for systems with randomly multi-step sensor delays. , 2014, , .		0
529	Event-triggered H controller design for networked control systems with nonlinear perturbations. , 2015, , .		O
530	Robust sampled-data H control for offshore steel jacket platforms. , 2015, , .		0
531	Islanding detection based on networked ellipsoidal estimation for distributed grid-connected PV generation systems. , $2016, , .$		O
532	Networked output feedback H<inf> \hat{a}^* Z</inf> control for offshore structures under earthquakes. , 2016, , .		0
533	A brief overview of delayed feedback control for offshore structures. , 2016, , .		O
534	On tighter estimation of the time derivative of Lyapunov-Krasovskii functionals and stability criteria for time-delay systems. , $2016, , .$		0
535	On designing event-based consensus protocols for nonlinear multi-agent systems. , 2016, , .		O
536	Finite-Time Consensus for Discontinuous Multi-Agent Systems over Switching Topology. , 2018, , .		0
537	Networked Active Vibration Control of Structural Systems Under Network-Induced Delays. , 2018, , .		O
538	Distributed H <inf>\hat{a}^*</inf> -Consensus Fault Detection for Fuzzy Systems with Faults, Switching Network Topology, Packet Dropouts and Channel Fading., 2018,,.		0
539	Finite-Time Containment Control of Nonlinear Multi-Agent Systems with Non-Singular Terminal Sliding Mode. , 2018, , .		0
540	Distributed Optimization: An Edge-Based Fixed-Time Consensus Approach., 2019,, 105-125.		0

#	Article	IF	CITATIONS
541	Fixed-Time Cooperative Control forÂHigh-Order Multi-Agent Systems. , 2019, , 69-83.		O
542	Distributed Optimization with Preserved Network Connectivity., 2019, , 127-151.		0
543	Reliable Filtering for Discrete-Time Nonlinear Systems via Innovation Constraints. , 2019, , .		0
544	Two-Target Tracking Over Heterogenous Sensor Networks Under Deception Attacks. , 2019, , .		0
545	Resilient Distributed Target Tracking Over Sensor Networks Against Misbehaving Nodes. , 2019, , .		0
546	Optimal Tracking Control with Feedforward Compensation. , 2019, , 33-48.		0
547	Network-Based Modeling and Active Control. , 2019, , 131-153.		0
548	Delayed Dynamic Output Feedback Control. , 2019, , 109-129.		0
549	Dynamic Models of Offshore Platforms. , 2019, , 17-31.		0
550	Special issue on recent advances in security and privacy-preserving techniques of distributed networked systems. Information Sciences, 2021, 545, 277-279.	4.0	0
551	Performance analysis and synthesis of industrial cyber-physical systems. International Journal of Systems Science, 2021, 52, 1107-1109.	3.7	0
552	Networked Active Suspension Control of In-Wheel Motor Driven Electric Vehicles Under Aperiodic Sampling and Transmission Delays. Communications in Computer and Information Science, 2021, , 274-284.	0.4	0
553	A Mixed Sampling Scheme for Wireless Networked Control Systems. , 2015, , 125-143.		0
554	Decentralized Control for IP-based Large-Scale Systems. , 2015, , 59-75.		0
555	Event-Triggered H â^ž Reliable Control in Network Environments. , 2019, , 155-181.		0
556	Delayed Robust Non-fragile Hâ^ž Control. , 2019, , 91-108.		0
557	Distributed filtering of networked dynamic systems with non-Gaussian noises over sensor networks: A survey. Kybernetika, 0, , 5-34.	0.0	0
558	Networked Cooperative Dynamic Positioning of Multiple Unmanned Surface Vehicles. , 2020, , .		0

QING-LONG HAN

#	Article	IF	CITATIONS
559	Distributed Finite-Time Secondary Control for Islanded Microgrids. Power Systems, 2022, , 73-91.	0.3	O
560	Distributed Resilient Finite-Time Secondary Control for Heterogeneous BESSs. Power Systems, 2022, , 93-114.	0.3	0
561	Distributed Optimal Control of DC Microgrids with Communication Delays. Power Systems, 2022, , 115-136.	0.3	O
562	Sampled-Data-Based Event-Triggered Consensus of Multi-agent Systems. Power Systems, 2022, , 31-47.	0.3	0
563	Event-Triggered control for singular systems. , 2021, , .		0