List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/584421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interferon-α2 Auto-antibodies in Convalescent Plasma Therapy for COVID-19. Journal of Clinical Immunology, 2022, 42, 232-239.	2.0	26
2	Experimental and field investigations of exposure, replication and transmission of SARS-CoV-2 in pigs in the Netherlands. Emerging Microbes and Infections, 2022, 11, 91-94.	3.0	11
3	SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Research, 2022, 32, 322-324.	5.7	148
4	Middle East respiratory syndrome coronavirus infection in camelids. Veterinary Pathology, 2022, 59, 546-555.	0.8	6
5	Divergent SARS-CoV-2 Omicron–reactive T and B cell responses in COVID-19 vaccine recipients. Science Immunology, 2022, 7, eabo2202.	5.6	337
6	Modeling Infection and Tropism of Human Parainfluenza Virus Type 3 in Ferrets. MBio, 2022, 13, e0383121.	1.8	5
7	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	13.7	117
8	Spreading of SARS-CoV-2 from hamsters to humans. Lancet, The, 2022, 399, 1027-1028.	6.3	11
9	Distinct spatial arrangements of ACE2 and TMPRSS2 expression in Syrian hamster lung lobes dictates SARS-CoV-2 infection patterns. PLoS Pathogens, 2022, 18, e1010340.	2.1	13
10	SARS-CoV-2 pathogenesis. Nature Reviews Microbiology, 2022, 20, 270-284.	13.6	404
11	Methods for fighting emerging pathogens. Nature Methods, 2022, , .	9.0	1
12	An ACE2-blocking antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants of concern. Science Immunology, 2022, 7, eabp9312.	5.6	35
13	An early warning system for emerging SARS-CoV-2 variants. Nature Medicine, 2022, 28, 1110-1115.	15.2	47
14	SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters. Nature Communications, 2022, 13, .	5.8	73
15	Protective efficacy of an RBD-based Middle East respiratory syndrome coronavirus (MERS-CoV) particle vaccine in llamas. One Health Outlook, 2022, 4, .	1.4	4
16	Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct. Science Immunology, 2022, 7, .	5.6	89
17	Potency of Fusion-Inhibitory Lipopeptides against SARS-CoV-2 Variants of Concern. MBio, 2022, 13, .	1.8	9
18	Recapitulating infection, thermal sensitivity and antiviral treatment of seasonal coronaviruses in human airway organoids. EBioMedicine, 2022, 81, 104132.	2.7	8

#	Article	IF	CITATIONS
19	Pulmonary lesions following inoculation with the SARS-CoV-2 Omicron BA.1 (B.1.1.529) variant in Syrian golden hamsters. Emerging Microbes and Infections, 2022, 11, 1778-1786.	3.0	7
20	Multimerization- and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins. PLoS Pathogens, 2021, 17, e1009282.	2.1	42
21	Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science, 2021, 371, 1379-1382.	6.0	158
22	Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell, 2021, 184, 1188-1200.e19.	13.5	154
23	A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies. Nature Communications, 2021, 12, 1715.	5.8	138
24	Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation. ELife, 2021, 10,	2.8	77
25	A single subcutaneous or intranasal immunization with adenovirusâ€based SARSâ€CoVâ€2 vaccine induces robust humoral and cellular immune responses in mice. European Journal of Immunology, 2021, 51, 1774-1784.	1.6	30
26	High Levels of Neutrophil Extracellular Traps Persist in the Lower Respiratory Tract of Critically Ill Patients With Coronavirus Disease 2019. Journal of Infectious Diseases, 2021, 223, 1512-1521.	1.9	51
27	Effects of potent neutralizing antibodies from convalescent plasma in patients hospitalized for severe SARS-CoV-2 infection. Nature Communications, 2021, 12, 3189.	5.8	139
28	Human Respiratory Syncytial Virus Subgroup A and B Infections in Nasal, Bronchial, Small-Airway, and Organoid-Derived Respiratory Cultures. MSphere, 2021, 6, .	1.3	14
29	SARS-CoV-2 variants of concern partially escape humoral but not T cell responses in COVID-19 convalescent donors and vaccine recipients. Science Immunology, 2021, 6, .	5.6	455
30	Advancing lung organoids for COVID-19 research. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	39
31	SARS-CoV-2 Neutralizing Human Antibodies Protect Against Lower Respiratory Tract Disease in a Hamster Model. Journal of Infectious Diseases, 2021, 223, 2020-2028.	1.9	28
32	Immunogenicity and efficacy of the COVID-19 candidate vector vaccine MVA-SARS-2-S in preclinical vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	64
33	Science, not speculation, is essential to determine how SARS-CoV-2 reached humans. Lancet, The, 2021, 398, 209-211.	6.3	18
34	The Post-Acute Phase of SARS-CoV-2 Infection in Two Macaque Species Is Associated with Signs of Ongoing Virus Replication and Pathology in Pulmonary and Extrapulmonary Tissues. Viruses, 2021, 13, 1673.	1.5	28
35	Seasonal coronavirus–specific B cells with limited SARS-CoV-2 cross-reactivity dominate the IgG response in severe COVID-19. Journal of Clinical Investigation, 2021, 131, .	3.9	49
36	A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nature Communications, 2021, 12, 5498.	5.8	57

#	Article	IF	CITATIONS
37	The next phase of SARS-CoV-2 surveillance: real-time molecular epidemiology. Nature Medicine, 2021, 27, 1518-1524.	15.2	178
38	Animal models of SARS-CoV-2 transmission. Current Opinion in Virology, 2021, 50, 8-16.	2.6	21
39	Evaluation of a multi-species SARS-CoV-2 surrogate virus neutralization test. One Health, 2021, 13, 100313.	1.5	28
40	An organoidâ€derived bronchioalveolar model for SARSâ€CoVâ€2 infection of human alveolar type Ilâ€like cells. EMBO Journal, 2021, 40, e105912.	3.5	153
41	Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nature Communications, 2021, 12, 267.	5.8	601
42	Susceptibility of rabbits to SARS-CoV-2. Emerging Microbes and Infections, 2021, 10, 1-7.	3.0	133
43	SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. ELife, 2021, 10, .	2.8	115
44	Zoonoses Anticipation and Preparedness Initiative, stakeholders conference, February 4 & 5, 2021. Biologicals, 2021, 74, 10-15.	0.5	2
45	Targeted proteomics as a tool to detect SARS-CoV-2 proteins in clinical specimens. PLoS ONE, 2021, 16, e0259165.	1.1	27
46	Animal models for COVID-19. Nature, 2020, 586, 509-515.	13.7	705
47	Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance, 2020, 25, .	3.9	5,865
48	How the COVID-19 pandemic highlights the necessity of animal research. Current Biology, 2020, 30, R1014-R1018.	1.8	26
49	Assessing the extent of SARS-CoV-2 circulation through serological studies. Nature Medicine, 2020, 26, 1171-1172.	15.2	44
50	A human monoclonal antibody blocking SARS-CoV-2 infection. Nature Communications, 2020, 11, 2251.	5.8	919
51	Particulate multivalent presentation of the receptor binding domain induces protective immune responses against MERS-CoV. Emerging Microbes and Infections, 2020, 9, 1080-1091.	3.0	26
52	Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science, 2020, 369, 643-650.	6.0	1,104
53	Severe Acute Respiratory Syndrome Coronavirus 2â^'Specific Antibody Responses in Coronavirus Disease Patients. Emerging Infectious Diseases, 2020, 26, 1478-1488.	2.0	1,389
54	An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment. Nature Communications, 2020, 11, 3436.	5.8	321

#	Article	IF	CITATIONS
55	SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nature Communications, 2020, 11, 3496.	5.8	395
56	The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 2020, 5, 536-544.	5.9	5,799
57	Statement in support of the scientists, public health professionals, and medical professionals of China combatting COVID-19. Lancet, The, 2020, 395, e42-e43.	6.3	182
58	SARS-CoV-2 productively infects human gut enterocytes. Science, 2020, 369, 50-54.	6.0	1,347
59	Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine, 2020, 55, 102743.	2.7	304
60	Serologic Detection of Middle East Respiratory Syndrome Coronavirus Functional Antibodies. Emerging Infectious Diseases, 2020, 26, 1024-1027.	2.0	16
61	Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: an open-label, phase 1 trial. Lancet Infectious Diseases, The, 2020, 20, 827-838.	4.6	125
62	Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science, 2020, 368, 1012-1015.	6.0	802
63	Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Seropositive Camel Handlers in Kenya. Viruses, 2020, 12, 396.	1.5	16
64	Development of immunohistochemistry and in situ hybridisation for the detection of SARS-CoV and SARS-CoV-2 in formalin-fixed paraffin-embedded specimens. Scientific Reports, 2020, 10, 21894.	1.6	18
65	Phenotype and kinetics of SARS-CoV-2–specific T cells in COVID-19 patients with acute respiratory distress syndrome. Science Immunology, 2020, 5, .	5.6	851
66	Laboratory readiness and response for novel coronavirus (2019-nCoV) in expert laboratories in 30 EU/EEA countries, January 2020. Eurosurveillance, 2020, 25, .	3.9	153
67	Authors' response: Plenty of coronaviruses but no SARS-CoV-2. Eurosurveillance, 2020, 25, .	3.9	1
68	ADAR1: "Editor-in-Chief―of Cytoplasmic Innate Immunity. Frontiers in Immunology, 2019, 10, 1763.	2.2	137
69	Failure to detect MERSâ€CoV RNA in urine of naturally infected dromedary camels. Zoonoses and Public Health, 2019, 66, 437-438.	0.9	11
70	Blocking transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) in llamas by vaccination with a recombinant spike protein. Emerging Microbes and Infections, 2019, 8, 1593-1603.	3.0	29
71	Sensitive and Specific Detection of Low-Level Antibody Responses in Mild Middle East Respiratory Syndrome Coronavirus Infections. Emerging Infectious Diseases, 2019, 25, 1868-1877.	2.0	80
72	Comparison of Serologic Assays for Middle East Respiratory Syndrome Coronavirus. Emerging Infectious Diseases, 2019, 25, 1878-1883.	2.0	16

#	Article	IF	CITATIONS
73	Species-Specific Colocalization of Middle East Respiratory Syndrome Coronavirus Attachment and Entry Receptors. Journal of Virology, 2019, 93, .	1.5	33
74	Lack of Middle East Respiratory Syndrome Coronavirus Transmission in Rabbits. Viruses, 2019, 11, 381.	1.5	9
75	Host Determinants of MERS-CoV Transmission and Pathogenesis. Viruses, 2019, 11, 280.	1.5	55
76	Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Emerging Microbes and Infections, 2019, 8, 516-530.	3.0	99
77	MERS-CoV in Camels but Not Camel Handlers, Sudan, 2015 and 2017. Emerging Infectious Diseases, 2019, 25, 2333-2335.	2.0	21
78	Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts. Scientific Reports, 2019, 9, 18892.	1.6	21
79	Coâ€localization of Middle East respiratory syndrome coronavirus (<scp>MERS</scp> oV) and dipeptidyl peptidaseâ€4 in the respiratory tract and lymphoid tissues of pigs and llamas. Transboundary and Emerging Diseases, 2019, 66, 831-841.	1.3	18
80	DPP4, the Middle East Respiratory Syndrome Coronavirus Receptor, is Upregulated in Lungs of Smokers and Chronic Obstructive Pulmonary Disease Patients. Clinical Infectious Diseases, 2018, 66, 45-53.	2.9	89
81	Multihospital Outbreak of a Middle East Respiratory Syndrome Coronavirus Deletion Variant, Jordan: A Molecular, Serologic, and Epidemiologic Investigation. Open Forum Infectious Diseases, 2018, 5, ofy095.	0.4	20
82	Experimental infection of dromedaries with Middle East respiratory syndrome-Coronavirus is accompanied by massive ciliary loss and depletion of the cell surface receptor dipeptidyl peptidase 4. Scientific Reports, 2018, 8, 9778.	1.6	33
83	Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection. Science Advances, 2018, 4, eaas9667.	4.7	66
84	Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels. One Health, 2018, 5, 65-68.	1.5	39
85	MERS-coronavirus: From discovery to intervention. One Health, 2017, 3, 11-16.	1.5	43
86	Seroepidemiology of hepatitis B and C virus infections among blood donors in Ethiopia. Journal of Medical Virology, 2017, 89, 1300-1303.	2.5	10
87	Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature, 2017, 544, 309-315.	13.7	346
88	Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches. Current Opinion in Virology, 2017, 23, 49-58.	2.6	60
89	Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Infection in Camel Workers in Qatar During 2013–2014: A Case-Control Study. Journal of Infectious Diseases, 2017, 215, 1702-1705.	1.9	33
90	Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8508-E8517.	3.3	272

#	Article	IF	CITATIONS
91	Phenotypic Differences between Asian and African Lineage Zika Viruses in Human Neural Progenitor Cells. MSphere, 2017, 2, .	1.3	83
92	Identification of HCV Resistant Variants against Direct Acting Antivirals in Plasma and Liver of Treatment NaÃ ⁻ ve Patients. Scientific Reports, 2017, 7, 4688.	1.6	17
93	Tissue Distribution of the MERS-Coronavirus Receptor in Bats. Scientific Reports, 2017, 7, 1193.	1.6	34
94	A novel hepatitis B virus subgenotype D10 circulating in Ethiopia. Journal of Viral Hepatitis, 2017, 24, 163-173.	1.0	15
95	Livestock Susceptibility to Infection with Middle East Respiratory Syndrome Coronavirus. Emerging Infectious Diseases, 2017, 23, 232-240.	2.0	90
96	Genetic diversity of hepatitis C virus in Ethiopia. PLoS ONE, 2017, 12, e0179064.	1.1	14
97	Deletion Variants of Middle East Respiratory Syndrome Coronavirus from Humans, Jordan, 2015. Emerging Infectious Diseases, 2016, 22, 716-719.	2.0	38
98	MERS-CoV Infection of Alpaca in a Region Where MERS-CoV is Endemic. Emerging Infectious Diseases, 2016, 22, 1129-1131.	2.0	67
99	Molecular epidemiology and genetic diversity of hepatitis B virus in Ethiopia. Journal of Medical Virology, 2016, 88, 1035-1043.	2.5	16
100	Miscarriage Associated with Zika Virus Infection. New England Journal of Medicine, 2016, 375, 1002-1004.	13.9	142
101	Intrathecal CD4 ⁺ and CD8 ⁺ Tâ€cell responses to endogenously synthesized candidate diseaseâ€associated human autoantigens in multiple sclerosis patients. European Journal of Immunology, 2016, 46, 347-353.	1.6	11
102	Cross host transmission in the emergence of MERS coronavirus. Current Opinion in Virology, 2016, 16, 55-62.	2.6	75
103	Hepatitis E Virus (HEV) Genotype 3 Infection of Human Liver Chimeric Mice as a Model for Chronic HEV Infection. Journal of Virology, 2016, 90, 4394-4401.	1.5	73
104	Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary Camels. Journal of Virology, 2016, 90, 4838-4842.	1.5	107
105	An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels. Science, 2016, 351, 77-81.	6.0	216
106	Naturally occurring recombination in ferret coronaviruses revealed by complete genome characterization. Journal of General Virology, 2016, 97, 2180-2186.	1.3	14
107	The sample of choice for detecting Middle East respiratory syndrome coronavirus in asymptomatic dromedary camels using real-time reversetranscription polymerase chain reaction. OIE Revue Scientifique Et Technique, 2016, 35, 905-911.	0.5	9
108	Novel in vivo and in vitro models of Hepatitis E virus genotype 3 infectivity for chronic human HEV infection. Journal of Clinical Virology, 2015, 70, S120.	1.6	0

#	Article	IF	CITATIONS
109	Deployment of Dutch mobile laboratories in the West African Ebola virus response. Journal of Clinical Virology, 2015, 70, S3.	1.6	1
110	High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014. Infection Ecology and Epidemiology, 2015, 5, 28305.	0.5	68
111	Genome Sequence of Enterovirus D68 and Clinical Disease, Thailand. Emerging Infectious Diseases, 2015, 21, 384-384.	2.0	11
112	Occupational Exposure to Dromedaries and Risk for MERS-CoV Infection, Qatar, 2013–2014. Emerging Infectious Diseases, 2015, 21, 1422-1425.	2.0	66
113	Detection of Circovirus in Foxes with Meningoencephalitis, United Kingdom, 2009–2013. Emerging Infectious Diseases, 2015, 21, 1205-1208.	2.0	52
114	Inflammatory Monocytes Recruited to the Liver within 24 Hours after Virus-Induced Inflammation Resemble Kupffer Cells but Are Functionally Distinct. Journal of Virology, 2015, 89, 4809-4817.	1.5	37
115	Reliable typing of MERS-CoV variants with a small genome fragment. Journal of Clinical Virology, 2015, 64, 83-87.	1.6	23
116	Pathogenesis of Middle East respiratory syndrome coronavirus. Journal of Pathology, 2015, 235, 175-184.	2.1	128
117	ATP1A1-Mediated Src Signaling Inhibits Coronavirus Entry into Host Cells. Journal of Virology, 2015, 89, 4434-4448.	1.5	101
118	Asymptomatic Middle East Respiratory Syndrome Coronavirus Infection in Rabbits. Journal of Virology, 2015, 89, 6131-6135.	1.5	73
119	Identification of Protein Receptors for Coronaviruses by Mass Spectrometry. Methods in Molecular Biology, 2015, 1282, 165-182.	0.4	12
120	Genotypic anomaly in Ebola virus strains circulating in Magazine Wharf area, Freetown, Sierra Leone, 2015. Eurosurveillance, 2015, 20, .	3.9	14
121	Metagenomic Survey for Viruses in Western Arctic Caribou, Alaska, through Iterative Assembly of Taxonomic Units. PLoS ONE, 2014, 9, e105227.	1.1	21
122	Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner. PLoS Pathogens, 2014, 10, e1004502.	2.1	338
123	New Viruses in Idiopathic Human Diarrhea Cases, the Netherlands. Emerging Infectious Diseases, 2014, 20, 1218-22.	2.0	84
124	Geographic Distribution of MERS Coronavirus among Dromedary Camels, Africa. Emerging Infectious Diseases, 2014, 20, 1370-1374.	2.0	167
125	Isolation of MERS Coronavirus from a Dromedary Camel, Qatar, 2014. Emerging Infectious Diseases, 2014, 20, 1339-42.	2.0	164
126	Comparative efficacy, pharmacokinetic, pharmacodynamic activity, and interferon stimulated gene expression of different interferon formulations in HIV/HCV genotypeâ€1 infected patients. Journal of Medical Virology, 2014, 86, 177-185.	2.5	3

#	Article	IF	CITATIONS
127	Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice. Vaccine, 2014, 32, 5975-5982.	1.7	121
128	Neutralizing the MERS Coronavirus Threat. Science Translational Medicine, 2014, 6, 235fs19.	5.8	6
129	Membrane ectopeptidases targeted by human coronaviruses. Current Opinion in Virology, 2014, 6, 55-60.	2.6	37
130	MERS: emergence of a novel human coronavirus. Current Opinion in Virology, 2014, 5, 58-62.	2.6	170
131	Updated Phylogenetic Analysis of Arenaviruses Detected in Boid Snakes. Journal of Virology, 2014, 88, 1399-1400.	1.5	15
132	Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infectious Diseases, The, 2014, 14, 140-145.	4.6	571
133	Exploring the Potential of Next-Generation Sequencing in Detection of Respiratory Viruses. Journal of Clinical Microbiology, 2014, 52, 3722-3730.	1.8	99
134	Novel divergent nidovirus in a python with pneumonia. Journal of General Virology, 2014, 95, 2480-2485.	1.3	41
135	Adenosine Deaminase Acts as a Natural Antagonist for Dipeptidyl Peptidase 4-Mediated Entry of the Middle East Respiratory Syndrome Coronavirus. Journal of Virology, 2014, 88, 1834-1838.	1.5	141
136	Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen. International Journal of Antimicrobial Agents, 2014, 44, 528-532.	1.1	103
137	The Pathology and Pathogenesis of Experimental Severe Acute Respiratory Syndrome and Influenza in Animal Models. Journal of Comparative Pathology, 2014, 151, 83-112.	0.1	143
138	Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014. Eurosurveillance, 2014, 19, .	3.9	136
139	Geographic Distribution of MERS Coronavirus among Dromedary Camels, Africa. Emerging Infectious Diseases, 2014, 20, .	2.0	5
140	Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infectious Diseases, The, 2013, 13, 859-866.	4.6	616
141	The Receptor Binding Domain of the New Middle East Respiratory Syndrome Coronavirus Maps to a 231-Residue Region in the Spike Protein That Efficiently Elicits Neutralizing Antibodies. Journal of Virology, 2013, 87, 9379-9383.	1.5	204
142	Spiking the MERS-coronavirus receptor. Cell Research, 2013, 23, 1069-1070.	5.7	23
143	Middle East Respiratory Syndrome Coronavirus Spike Protein Delivered by Modified Vaccinia Virus Ankara Efficiently Induces Virus-Neutralizing Antibodies. Journal of Virology, 2013, 87, 11950-11954.	1.5	127
144	Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13109-13113.	3.3	422

#	Article	IF	CITATIONS
145	Detection of novel divergent arenaviruses in boid snakes with inclusion body disease in The Netherlands. Journal of General Virology, 2013, 94, 1206-1210.	1.3	79
146	Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495, 251-254.	13.7	1,731
147	MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment. Journal of General Virology, 2013, 94, 1749-1760.	1.3	313
148	Novel Cyclovirus in Human Cerebrospinal Fluid, Malawi, 2010–2011. Emerging Infectious Diseases, 2013, 19, .	2.0	72
149	Identification of Multiple Novel Viruses, Including a Parvovirus and a Hepevirus, in Feces of Red Foxes. Journal of Virology, 2013, 87, 7758-7764.	1.5	100
150	T-Cell Tropism of Simian Varicella Virus during Primary Infection. PLoS Pathogens, 2013, 9, e1003368.	2.1	44
151	Modeling Host Genetic Regulation of Influenza Pathogenesis in the Collaborative Cross. PLoS Pathogens, 2013, 9, e1003196.	2.1	183
152	Inhibition of Middle East Respiratory Syndrome Coronavirus Infection by Anti-CD26 Monoclonal Antibody. Journal of Virology, 2013, 87, 13892-13899.	1.5	85
153	Performance Evaluation of the New Roche cobas AmpliPrep/cobas TaqMan HCV Test, Version 2.0, for Detection and Quantification of Hepatitis C Virus RNA. Journal of Clinical Microbiology, 2013, 51, 238-242.	1.8	36
154	Middle East Respiratory Syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013. Eurosurveillance, 2013, 18, 20662.	3.9	174
155	Presence of anti-interferon antibodies is not associated with non-response to peginterferon treatment in chronic hepatitis B. Antiviral Therapy, 2013, 19, 423-427.	0.6	1
156	Impact of Soluble CD26 on Treatment Outcome and Hepatitis C Virus-Specific T Cells in Chronic Hepatitis C Virus Genotype 1 Infection. PLoS ONE, 2013, 8, e56991.	1.1	12
157	The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Does Not Replicate in Syrian Hamsters. PLoS ONE, 2013, 8, e69127.	1.1	114
158	Identification and Characterization of Two Novel Viruses in Ocular Infections in Reindeer. PLoS ONE, 2013, 8, e69711.	1.1	16
159	Metagenomic Analysis of the Ferret Fecal Viral Flora. PLoS ONE, 2013, 8, e71595.	1.1	70
160	Specific serology for emerging human coronaviruses by protein microarray. Eurosurveillance, 2013, 18, 20441.	3.9	80
161	Continuous Interferon-α2B Infusion in Combination with Ribavirin for Chronic Hepatitis C in Treatment-Experienced Patients. Antiviral Therapy, 2012, 17, 509-517.	0.6	3
162	Expression Quantitative Trait Loci for Extreme Host Response to Influenza A in Pre-Collaborative Cross Mice. G3: Genes, Genomes, Genetics, 2012, 2, 213-221.	0.8	78

#	Article	IF	CITATIONS
163	Human Coronavirus EMC Does Not Require the SARS-Coronavirus Receptor and Maintains Broad Replicative Capability in Mammalian Cell Lines. MBio, 2012, 3, .	1.8	180
164	Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans. MBio, 2012, 3, .	1.8	766
165	Metagenomic Analysis of the Viral Flora of Pine Marten and European Badger Feces. Journal of Virology, 2012, 86, 2360-2365.	1.5	101
166	Picobirnaviruses in the Human Respiratory Tract. Emerging Infectious Diseases, 2012, 18, 1538-1539.	2.0	33
167	Calicivirus from Novel Recovirus Genogroup in Human Diarrhea, Bangladesh. Emerging Infectious Diseases, 2012, 18, 1192-1195.	2.0	28
168	Novel Hepatitis E Virus in Ferrets, the Netherlands. Emerging Infectious Diseases, 2012, 18, 1369-1370.	2.0	158
169	Impact of Obesity on the Bioavailability of Peginterferon-α2a and Ribavirin and Treatment Outcome for Chronic Hepatitis C Genotype 2 or 3. PLoS ONE, 2012, 7, e37521.	1.1	19
170	Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Eurosurveillance, 2012, 17, .	3.9	314
171	IL28B polymorphisms predict reduction of HCV RNA from the first day of therapy in chronic hepatitis C. Journal of Hepatology, 2011, 55, 980-988.	1.8	97
172	Enteric Coronavirus in Ferrets, the Netherlands. Emerging Infectious Diseases, 2011, 17, 1570-1.	2.0	18
173	Distinct Severe Acute Respiratory Syndrome Coronavirus-Induced Acute Lung Injury Pathways in Two Different Nonhuman Primate Species. Journal of Virology, 2011, 85, 4234-4245.	1.5	66
174	Twice-weekly pegylated interferon-α-2a and ribavirin results in superior viral kinetics in HIV/hepatitis C virus co-infected patients compared to standard therapy. Aids, 2011, 25, 1179-1187.	1.0	17
175	Response Prediction in Chronic Hepatitis C by Assessment of IP-10 and IL28B-Related Single Nucleotide Polymorphisms. PLoS ONE, 2011, 6, e17232.	1.1	131
176	A Recombinant Influenza A Virus Expressing Domain III of West Nile Virus Induces Protective Immune Responses against Influenza and West Nile Virus. PLoS ONE, 2011, 6, e18995.	1.1	34
177	Nonresponder Patients with Hepatitis C Virus Genotype 2/3 Infection: A Question of Low Systemic Interferon Concentrations?. Clinical Infectious Diseases, 2010, 50, e22-e25.	2.9	2
178	Exacerbated Innate Host Response to SARS-CoV in Aged Non-Human Primates. PLoS Pathogens, 2010, 6, e1000756.	2.1	286
179	2011 IL28B POLYMORPHISM IS SIGNIFICANTLY CORRELATED WITH IFN ANTI-VIRAL EFFECTIVENESS ALREADY ON FIRST DAY OF PEGYLATED INTERFERON-1± AND RIBAVIRIN THERAPY OF CHRONIC HCV INFECTION. Journal of Hepatology, 2010, 52, S468.	1.8	7
180	Pharmacodynamics of PEG-IFN-α-2a in HIV/HCV co-infected patients: Implications for treatment outcomes. Journal of Hepatology, 2010, 53, 460-467.	1.8	31

#	Article	IF	CITATIONS
181	Baseline anti-NS4a antibodies in combination with on-treatment quantitative HCV-RNA reliably identifies nonresponders to pegylated interferon–ribavirin combination therapy after 4 weeks of treatment. European Journal of Gastroenterology and Hepatology, 2010, 22, 1.	0.8	2
182	SARS. , 2009, , 671-683.		2
183	Early Upregulation of Acute Respiratory Distress Syndrome-Associated Cytokines Promotes Lethal Disease in an Aged-Mouse Model of Severe Acute Respiratory Syndrome Coronavirus Infection. Journal of Virology, 2009, 83, 9022-9022.	1.5	2
184	Therapeutic response to peg-IFN-alpha-2b and ribavirin in HIV/HCV co-infected African-American and Caucasian patients as a function of HCV viral kinetics and interferon pharmacodynamics. Aids, 2009, 23, 2439-2450.	1.0	18
185	Unraveling the complexities of the interferon response during SARS-CoV infection. Future Virology, 2009, 4, 71-78.	0.9	15
186	Early Upregulation of Acute Respiratory Distress Syndrome-Associated Cytokines Promotes Lethal Disease in an Aged-Mouse Model of Severe Acute Respiratory Syndrome Coronavirus Infection. Journal of Virology, 2009, 83, 7062-7074.	1.5	156
187	Detection and biological activity of therapeutically induced antibodies to peg-IFN-α-2a in hepatitis C virus infected patients. Cytokine, 2009, 48, 92.	1.4	0
188	The Application of Genomics to Emerging Zoonotic Viral Diseases. PLoS Pathogens, 2009, 5, e1000557.	2.1	49
189	Virogenomics: the virus–host interaction revisited. Current Opinion in Microbiology, 2008, 11, 461-466.	2.3	7
190	ALT and viral load decline during PEG-IFN alpha-2b treatment for HBeAg-positive chronic hepatitis B. Journal of Clinical Virology, 2008, 42, 160-164.	1.6	12
191	DC-SIGN enhances infection of cells with glycosylated West Nile virus in vitro and virus replication in human dendritic cells induces production of IFN-1± and TNF-1±. Virus Research, 2008, 135, 64-71.	1.1	62
192	Complete genome analysis of hepatitis C virus subtypes 6t and 6u. Journal of General Virology, 2008, 89, 1276-1281.	1.3	19
193	Severe acute respiratory syndrome (SARS) vaccines. , 2008, , 1301-1306.		Ο
194	Functional Genomics Highlights Differential Induction of Antiviral Pathways in the Lungs of SARS-CoV–Infected Macaques. PLoS Pathogens, 2007, 3, e112.	2.1	59
195	Characterization of Hepatitis C Virus Deletion Mutants Circulating in Chronically Infected Patients. Journal of Virology, 2007, 81, 12496-12503.	1.5	44
196	Differential antiviral effect of PEG-interferon-α-2b on HIV and HCV in the treatment of HIV/HCV co-infected patients. Aids, 2007, 21, 1855-1865.	1.0	34
197	[520] PREDICTION OF SUSTAINED ALT NORMALIZATION BY VIRAL LOAD DURING PEG-IFN ALPHA-2b TREATMENT FOR HBeAg-POSITIVE CHRONIC HEPATITIS B. Journal of Hepatology, 2007, 46, S198.	1.8	0
198	P1889 Pharmacokinetic profiles in chronic hepatitis C patients treated with high-dose pegylated interferon. International Journal of Antimicrobial Agents, 2007, 29, S541-S542.	1.1	0

#	Article	IF	CITATIONS
199	HCV-Specific T-Cell Response in Relation to Viral Kinetics and Treatment Outcome (DITTO-HCV Project). Gastroenterology, 2007, 133, 1132-1143.	0.6	57
200	The emerging role of ACE2 in physiology and disease. Journal of Pathology, 2007, 212, 1-11.	2.1	380
201	Modelling of Early Viral Kinetics and Pegylated Interferon-α2b Pharmacokinetics in Patients with HBeAg-Positive Chronic Hepatitis B. Antiviral Therapy, 2007, 12, 1285-1294.	0.6	9
202	Mycophenolic Acid Inhibits Hepatitis C Virus Replication and Acts in Synergy With Cyclosporin A and Interferon-α. Gastroenterology, 2006, 131, 1452-1462.	0.6	120
203	Interferon-Î ³ and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology, 2006, 353, 474-481.	1.1	120
204	Coronaviruses and their therapy. Antiviral Research, 2006, 71, 397-403.	1.9	47
205	Patterns of viral decline during PEC-interferon alpha-2b therapy in HBeAg-positive chronic hepatitis B: Relation to treatment response. Hepatology, 2006, 44, 721-727.	3.6	63
206	IP-10 predicts viral response and therapeutic outcome in difficult-to-treat patients with HCV genotype 1 infection. Hepatology, 2006, 44, 1617-1625.	3.6	193
207	Genotyping Hepatitis C Viruses from Southeast Asia by a Novel Line Probe Assay That Simultaneously Detects Core and 5′ Untranslated Regions. Journal of Clinical Microbiology, 2006, 44, 3969-3974.	1.8	47
208	Identification of a Naturally Occurring Recombinant Genotype 2/6 Hepatitis C Virus. Journal of Virology, 2006, 80, 7569-7577.	1.5	131
209	Authors' Response to Hogan. PLoS Medicine, 2006, 3, e415.	3.9	0
210	Interferon (IFN)–γ–Inducible Protein–10: Association with Histological Results, Viral Kinetics, and Outcome during Treatment with Pegylated IFNâ€Î±2a and Ribavirin for Chronic Hepatitis C Virus Infection. Journal of Infectious Diseases, 2006, 194, 895-903.	1.9	201
211	Antibodies Neutralizing Peginterferon Alfa during Retreatment of Hepatitis C. New England Journal of Medicine, 2006, 354, 1323-1324.	13.9	42
212	Nonhuman Primate Models for SARS. PLoS Medicine, 2006, 3, e194.	3.9	25
213	Virus Specific Immune Responses after Human Neoadjuvant Adenovirus-mediated Suicide Gene Therapy for Prostate Cancer. European Urology, 2005, 48, 153-161.	0.9	33
214	Immunisation with virion-loaded plasmacytoid or myeloid dendritic cells induces primary Th-1 immune responses. Vaccine, 2005, 23, 1343-1350.	1.7	5
215	Host-dependent type 1 cytokine responses driven by inactivated viruses may fail to default in the absence of IL-12 or IFN-α/β. Journal of General Virology, 2004, 85, 795-803.	1.3	19
216	Monitoring intrahepatic CD8+ T cells by fine-needle aspiration cytology in chronic hepatitis C infection. Journal of Viral Hepatitis, 2004, 11, 342-348.	1.0	8

#	Article	IF	CITATIONS
217	Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nature Medicine, 2004, 10, 290-293.	15.2	371
218	Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet, The, 2004, 363, 2139-2141.	6.3	252
219	The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain. Virology, 2003, 312, 395-406.	1.1	70
220	Comparative study of different methods to genotype hepatitis C virus type 6 variants. Journal of Virological Methods, 2003, 109, 195-201.	1.0	56
221	A replicon-based bioassay for the measurement of interferons in patients with chronic hepatitis C. Journal of Virological Methods, 2003, 110, 201-209.	1.0	161
222	SARS virus infection of cats and ferrets. Nature, 2003, 425, 915-915.	13.7	542
223	Rat testicular germ cells and Sertoli cells release different types of bioactive transforming growth factor beta in vitro. Reproductive Biology and Endocrinology, 2003, 1, 3.	1.4	17
224	Prostate cancer gene therapy: Preliminary clinical and pre-clinical results. European Urology Supplements, 2003, 2, 141.	0.1	0
225	Pretreatment intrahepatic CD8+ cell number correlates with virological response to antiviral therapy in chronic hepatitis C. Journal of Hepatology, 2003, 38, 180.	1.8	0
226	Molecular epidemiology of gibbon hepatitis B virus transmission. Journal of General Virology, 2003, 84, 147-155.	1.3	30
227	Pretreatment Intrahepatic CD8+Cell Count Correlates with Virological Response to Antiviral Therapy in Chronic Hepatitis C Virus Infection. Journal of Infectious Diseases, 2003, 188, 1528-1532.	1.9	20
228	SARS virus infection of cats and ferrets. Nature, 2003, 425, 915-915.	13.7	45
229	Protective Antiviral Immune Responses to Pseudorabies Virus Induced by DNA Vaccination Using Dimethyldioctadecylammonium Bromide as an Adjuvant. Journal of Virology, 2002, 76, 10540-10545.	1.5	26
230	DITTO-HCV early viral kinetics report - novel decline patterns in gen 1 but not gen 2–3 patients treated with PEG-interferon-alfa-2a and ribavirin. Journal of Hepatology, 2002, 36, 121.	1.8	7
231	Adverse effects of feline IL-12 during DNA vaccination against feline infectious peritonitis virus. Journal of General Virology, 2002, 83, 1-10.	1.3	44
232	A DNA vaccine coding for glycoprotein B of pseudorabies virus induces cell-mediated immunity in pigs and reduces virus excretion early after infection. Veterinary Immunology and Immunopathology, 2000, 74, 121-136.	0.5	39
233	Corrigendum to "A DNA vaccine coding for glycoprotein B of pseudorabies virus induces cell-mediated immunity in pigs and reduces virus excretion early after infection―[Vet. Immunol. Immunopathol. 74 (2000) 121–136]. Veterinary Immunology and Immunopathology, 2000, 75, 161-162.	0.5	2
234	Vaccination of pigs against pseudorabies virus with plasmid DNA encoding glycoprotein D. Vaccine, 1999, 17, 1264-1271.	1.7	32

#	Article	IF	CITATIONS
235	Effect of vaccination route and composition of DNA vaccine on the induction of protective immunity against pseudorabies infection in pigs. Veterinary Immunology and Immunopathology, 1998, 66, 113-126.	0.5	73
236	Persistence and Evolution of Feline Coronavirus in a Closed Cat-Breeding Colony. Virology, 1997, 234, 349-363.	1.1	126
237	Apoptosis and T-cell depletion during feline infectious peritonitis. Journal of Virology, 1996, 70, 8977-8983.	1.5	86
238	Tumor necrosis factor alpha promotes replication and pathogenicity of rat cytomegalovirus. Journal of Virology, 1994, 68, 2297-2304.	1.5	52
239	Suppression of rat cytomegalovirus replication by antibodies against gamma interferon. Journal of Virology, 1994, 68, 2305-2312.	1.5	23
240	Differential effects of anti-tumor necrosis factor monoclonal antibodies on systemic inflammatory responses in experimental endotoxemia in chimpanzees. Blood, 1994, 83, 446-451.	0.6	60
241	Tumor necrosis factor α levels in cats experimentally infected with feline immunodeficiency virus: effects of immunization and feline leukemia virus infection. Veterinary Immunology and Immunopathology, 1992, 35, 61-69.	0.5	30
242	Pneumococcal conjugate vaccines. Immunology Letters, 1991, 30, 267-274.	1.1	30
243	Protection of Rats against Pseudorabies Virus Infection by Â-Interferon. Experimental Biology and Medicine, 1989, 192, 47-55.	1.1	5