## Yuman Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5843525/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion. Journal of Materials Science and Technology, 2022, 98, 99-117.                      | 10.7 | 33        |
| 2  | Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion. Journal of Materials Science and Technology, 2022, 103, 121-133.                                                                                   | 10.7 | 22        |
| 3  | Grain boundary α-phase precipitation and coarsening: Comparing laser powder bed fusion with as-cast<br>Ti-6Al-4V. Scripta Materialia, 2022, 207, 114261.                                                                                                         | 5.2  | 40        |
| 4  | A microstructure-based creep model for additively manufactured nickel-based superalloys. Acta<br>Materialia, 2022, 224, 117528.                                                                                                                                  | 7.9  | 29        |
| 5  | On the complex intermetallics in an Al-Mn-Sc based alloy produced by laser powder bed fusion.<br>Journal of Alloys and Compounds, 2022, 901, 163571.                                                                                                             | 5.5  | 6         |
| 6  | Towards creep property improvement of selective laser melted Ni-based superalloy IN738LC. Journal of<br>Materials Science and Technology, 2022, 112, 301-314.                                                                                                    | 10.7 | 16        |
| 7  | In-situ duplex structure formation and high tensile strength of super duplex stainless steel produced<br>by directed laser deposition. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2022, 833, 142557. | 5.6  | 19        |
| 8  | Scanning strategy induced cracking and anisotropic weakening in grain texture of additively manufactured superalloys. Additive Manufacturing, 2022, 52, 102660.                                                                                                  | 3.0  | 3         |
| 9  | Corrosion resistant and high-strength dual-phase Mg-Li-Al-Zn alloy by friction stir processing.<br>Communications Materials, 2022, 3, .                                                                                                                          | 6.9  | 31        |
| 10 | Effect of in-situ layer-by-layer rolling on the microstructure, mechanical properties, and corrosion<br>resistance of a directed energy deposited 316L stainless steel. Additive Manufacturing, 2022, 55, 102863.                                                | 3.0  | 3         |
| 11 | Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion.<br>Materials and Design, 2022, 219, 110779.                                                                                                                      | 7.0  | 94        |
| 12 | Microstructure, mechanical behaviour and strengthening mechanisms in Hastelloy X manufactured by<br>electron beam and laser beam powder bed fusion. Journal of Alloys and Compounds, 2021, 862, 158034.                                                          | 5.5  | 21        |
| 13 | Intensive processing optimization for achieving strong and ductile Al-Mn-Mg-Sc-Zr alloy produced by selective laser melting. Materials and Design, 2021, 198, 109317.                                                                                            | 7.0  | 72        |
| 14 | Production Strategy for Manufacturing Large-Scale AlSi10Mg Components by Laser Powder Bed<br>Fusion. Jom, 2021, 73, 770-780.                                                                                                                                     | 1.9  | 13        |
| 15 | Effect of Deformation Reduction on Microstructure, Texture, and Mechanical Properties of Forged<br>Ti-6Al-4V. Journal of Materials Engineering and Performance, 2021, 30, 1147-1156.                                                                             | 2.5  | 7         |
| 16 | lsotropic and improved tensile properties of Ti-6Al-4V achieved by in-situ rolling in direct energy<br>deposition. Additive Manufacturing, 2021, 46, 102151.                                                                                                     | 3.0  | 8         |
| 17 | Effects of Post Heat Treatments on Microstructures and Mechanical Properties of Selective Laser<br>Melted Ti6Al4V Alloy. Metals, 2021, 11, 1593.                                                                                                                 | 2.3  | 13        |
| 18 | Hierarchical layered and refined grain structure of Inconel 718 superalloy produced by rolling-assisted directed energy deposition. Additive Manufacturing Letters, 2021, 1, 100009.                                                                             | 2.1  | 4         |

Үиман Zhu

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                               | IF                                                                           | CITATIONS                             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|
| 19 | Microstructure control by heat treatment for better ductility and toughness of Ti-6Al-4V produced by laser powder bed fusion. Australian Journal of Mechanical Engineering, 2021, 19, 680-691.                                                                                                                                                                                                        | 2.1                                                                          | 9                                     |
| 20 | Training high-strength aluminum alloys to withstand fatigue. Nature Communications, 2020, 11, 5198.                                                                                                                                                                                                                                                                                                   | 12.8                                                                         | 54                                    |
| 21 | Dynamic precipitation behavior and mechanical properties of hot-extruded Mg89Y4Zn2Li5 alloys with<br>different extrusion ratio and speed. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2020, 798, 140121.                                                                                                                                   | 5.6                                                                          | 17                                    |
| 22 | Helium bubble nucleation in Laser Powder Bed Fusion processed 304L stainless steel. Journal of<br>Nuclear Materials, 2020, 542, 152443.                                                                                                                                                                                                                                                               | 2.7                                                                          | 16                                    |
| 23 | The β1 Triad-Related Configurations in a Mg-RE Alloy. Metallurgical and Materials Transactions A:<br>Physical Metallurgy and Materials Science, 2020, 51, 1887-1896.                                                                                                                                                                                                                                  | 2.2                                                                          | 3                                     |
| 24 | Incoherent tilt grain boundaries stabilized by stacking faults and solute-cluster segregation: a case-study of an Mg-Gd alloy. Materials Research Letters, 2020, 8, 268-274.                                                                                                                                                                                                                          | 8.7                                                                          | 11                                    |
| 25 | Atomic-Scale Investigation of the Borides Precipitated in a Transient Liquid Phase-Bonded Ni-Based<br>Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,<br>2020, 51, 1689-1698.                                                                                                                                                                      | 2.2                                                                          | 12                                    |
| 26 | A first-principles study of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"&gt;<mml:msubsup><mml:mrow><mml:mi<br>mathvariant="normal"&gt;1²</mml:mi<br></mml:mrow><mml:mtext>F</mml:mtext><mml:mo>′</mml:mo>phase in magnesium-rare earth binary systems. Computational Materials Science, 2019, 170, 109126.</mml:msubsup></mml:math>                               | nsubsup>                                                                     |                                       |
| 27 | Effects of boron addition on microstructures and mechanical properties of Ti-6Al-4V manufactured by direct laser deposition. Materials and Design, 2019, 184, 108191.                                                                                                                                                                                                                                 | 7.0                                                                          | 80                                    |
| 28 | Effects of Calcium on Strength and Microstructural Evolution of Extruded Alloys Based on<br>Mg-3Al-1Zn-0.3Mn. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials<br>Science, 2019, 50, 4344-4363.                                                                                                                                                                          | 2.2                                                                          | 54                                    |
| 29 | Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity. Science, 2019, 363, 972-975.                                                                                                                                                                                                                                                                                    | 12.6                                                                         | 323                                   |
| 30 | Revisiting building block ordering of long-period stacking ordered structures in Mg–Y–Al alloys.<br>Acta Materialia, 2018, 152, 96-106.                                                                                                                                                                                                                                                               | 7.9                                                                          | 24                                    |
| 31 | On the Precipitation in an Ag-Containing Mg-Gd-Zr Alloy. Metallurgical and Materials Transactions A:<br>Physical Metallurgy and Materials Science, 2018, 49, 673-694.                                                                                                                                                                                                                                 | 2.2                                                                          | 48                                    |
| 32 | <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"&gt;<mml:mrow><mml:mrow><mml:mo>{</mml:mo><mml:mrow><mml:mn>10</mml:mn><mml<br>accent="true"&gt;<mml:mn>1</mml:mn><mml:mo>Â<sup>-</sup></mml:mo></mml<br></mml:mrow><mml:mn>1Twin boundary structures in a Mg–Gd alloy. Acta Materialia, 2018, 143, 1-12.</mml:mn></mml:mrow></mml:mrow></mml:math> | l:mrow> <r<br>ın&gt;<td>nml:mover<br/>:mrow&gt;<mm< td=""></mm<></td></r<br> | nml:mover<br>:mrow> <mm< td=""></mm<> |
| 33 | A 12R long-period stacking-ordered structure in a Mg-Ni-Y alloy. Journal of Materials Science and Technology, 2018, 34, 2235-2239.                                                                                                                                                                                                                                                                    | 10.7                                                                         | 83                                    |
| 34 | (Al,Mg) <sub>3</sub> La: a new phase in the Mg–Al–La system. Acta Crystallographica Section B:<br>Structural Science, Crystal Engineering and Materials, 2018, 74, 370-375.                                                                                                                                                                                                                           | 1.1                                                                          | 11                                    |
| 35 | Achieving exceptionally high strength in Mg 3Al 1Zn-0.3Mn extrusions via suppressing intergranular deformation. Acta Materialia, 2018, 160, 97-108.                                                                                                                                                                                                                                                   | 7.9                                                                          | 114                                   |
| 36 | Tilt boundaries and associated solute segregation in a Mg–Gd alloy. Acta Materialia, 2017, 127, 505-518.                                                                                                                                                                                                                                                                                              | 7.9                                                                          | 59                                    |

Үимал Zhu

| #  | Article                                                                                                                                                                          | IF        | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
|    | On the structure and role of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="cil_cif"</mml:math>                                                         |           |           |
| 37 | $verflow="scroll">l^2F a \end{tabular}$                                                                                                                                          | nmi:mtext | >         |
|    | In I <sup>2</sup> 1 precipitation in Mga€ Nd alloys. Acta Materialia, 2017, 133, 408-426.                                                                                        |           |           |
| 38 | Making every electron count: materials characterization by quantitative analytical scanning transmission electron microscopy. Microscopy and Microanalysis, 2016, 22, 1430-1431. | 0.4       | 0         |
|    |                                                                                                                                                                                  |           |           |
| 39 | Influence of Flash Treatment on Pseudoelastic Behaviour of Biomedical Ti-25Nb-3Zr-3Mo-2Sn Alloy.                                                                                 | 0.3       | 0         |
|    | Materials Science Forum, 2016, 879, 1375-1380.                                                                                                                                   |           | Č         |
|    | Atomic-scale study of {1 1 2} twin boundary structure in a β-Ti alloy. Philosophical Magazine Letters.                                                                           |           |           |
| 40 | 2016, 96, 280-285.                                                                                                                                                               | 1.2       | 7         |
|    |                                                                                                                                                                                  |           |           |
| 41 | Materials, 2016, 18, 1763-1769.                                                                                                                                                  | 3.5       | 40        |
|    |                                                                                                                                                                                  |           |           |
| 42 | A closer look at constituent induced localised corrosion in Al-Cu-Mg alloys. Corrosion Science, 2016, 113, 160-171                                                               | 6.6       | 61        |
|    | 115, 100 17 1.                                                                                                                                                                   |           |           |
| 43 | Texture evolution during static recrystallization of cold-rolled magnesium alloys. Acta Materialia,                                                                              | 79        | 349       |
|    | 2016, 105, 479-494.                                                                                                                                                              |           |           |
|    |                                                                                                                                                                                  |           |           |
| 44 | Solute clusters and GP zones in binary Mga€ RE alloys. Acta Materialia, 2016, 106, 260-271.                                                                                      | 7.9       | 131       |
|    | Procinitation in a Ary Containing Mr.V. Zn Allow Matallurgical and Matariala Transactions A. Dhusical                                                                            |           |           |
| 45 | Metallurgy and Materials Science, 2016, 47, 927-940.                                                                                                                             | 2.2       | 38        |
|    | · · ·                                                                                                                                                                            |           |           |
| 46 | HAADF-STEM study of phase separation and the subsequent I± phase precipitation in a I²-Ti alloy. Scripta Materialia, 2016, 112, 46-49.                                           | 5.2       | 27        |
|    |                                                                                                                                                                                  |           |           |
| 47 | Guided Self-Assembly of Nano-Precipitates into Mesocrystals. Scientific Reports, 2015, 5, 16530.                                                                                 | 3.3       | 12        |
|    |                                                                                                                                                                                  |           |           |
| 40 | On the prismatic presiding plates in $Ma^2 \mathcal{E}^{\mu} Ca^2 \mathcal{E}^{\mu}$ in allows. Scripta Materialia, 2015, 101, 16, 19                                            | E 9       | 19        |
| 40 |                                                                                                                                                                                  | 3.2       | 12        |
|    |                                                                                                                                                                                  |           |           |
| 49 | Annealing strengthening in a dilute Mg–Zn–Ca sheet alloy. Scripta Materialia, 2015, 107, 127-130.                                                                                | 5.2       | 62        |
|    | Characterization and Formation of Rod-Shaped (Al Si)3Ti Particles in an Al-7Si-0 35Mg-0 12Ti (WtÂPct)                                                                            |           |           |
| 50 | Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46,                                                                          | 2.2       | 8         |
|    | 5725-5751.                                                                                                                                                                       |           |           |
| 51 | Linear-chain configuration of precipitates in Mg–Nd alloys. Acta Materialia, 2015, 83, 239-247.                                                                                  | 7.9       | 36        |
|    |                                                                                                                                                                                  |           |           |
| 59 | A simulation study of β 1 precipitation on dislocations in an Mg–rare earth alloy. Acta Materialia, 2014,                                                                        | 7.0       | 60        |
| 52 | 77, 133-150.                                                                                                                                                                     | 1.7       | 00        |
|    | On the Structure, Transformation and Deformation of Long-Period Stacking Ordered Phases in                                                                                       |           |           |
| 53 | Mg-Y-Zn Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3338-3348.                                                      | 2.2       | 124       |
|    |                                                                                                                                                                                  |           |           |
| 54 | A simulation study of the shape of I²ã€² precipitates in Mg–Y and Mg–Gd alloys. Acta Materialia, 2013, 61, 453-466.                                                              | 7.9       | 150       |

Yuman Zhu

| #  | Article                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries. Science, 2013, 340, 957-960.                           | 12.6 | 659       |
| 56 | Simulation study of precipitation in an Mg–Y–Nd alloy. Acta Materialia, 2012, 60, 4819-4832.                                   | 7.9  | 84        |
| 57 | Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys. Acta Materialia, 2012, 60,<br>6562-6572.                | 7.9  | 233       |
| 58 | Characterization of planar features in Mg–Y–Zn alloys. Acta Materialia, 2010, 58, 464-475.                                     | 7.9  | 99        |
| 59 | The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys. Acta Materialia, 2010, 58,<br>2936-2947.            | 7.9  | 558       |
| 60 | Characterisation of intermetallic phases in an Mg–Y–Ag–Zn casting alloy. Philosophical Magazine<br>Letters, 2010, 90, 173-181. | 1.2  | 12        |
| 61 | The building block of long-period structures in Mg–RE–Zn alloys. Scripta Materialia, 2009, 60, 980-983.                        | 5.2  | 182       |
| 62 | Improvement in the age-hardening response of Mg–Y–Zn alloys by Ag additions. Scripta Materialia,<br>2008, 58, 525-528.         | 5.2  | 79        |
| 63 | One of the potentially optimal interfaces of β-FeSi2/Si. Journal of Crystal Growth, 2005, 279, 129-139.                        | 1.5  | 2         |